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ABSTRACT 

 

This study examined the effects of some dietary protein sources on intestinal bar-

rier function in the colon of mice. 24 female ICR mice were randomly grouped 

into 4 groups (n=6) fed casein, soybean protein, whey protein concentrate (WPC), 

and egg white diet for 28 days. In this study, we collected the colon to analyzed 

the TJs proteins. Cecal contents were also collected to analyze the SCFAs. Mice 

fed with WPC showed the highest serum LBP concentration. Soybean and casein 

groups had the highest expression of occludin in the colon of mice. Total SCFAs 

were not significantly different among the groups. Correlation analysis showed 

that there is a positive correlation between ZO-1 and ZO-2 with total SCFAs. 

There is a positive correlation between plasma LBP concentration with claudin-3 

expression in the colon of mice. These results confirmed that various dietary pro-

tein intake has a significant impact on the regulation of intestinal barrier integrity 

and SCFAs production might be contributing to the observation.  
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Introduction 

The intestinal mucosal barrier is important for nutritional health, notably in immune defense and 

nutrient digestion. In healthy conditions, the intestinal barrier restricts the diffusion of some pathogens, 

toxins, microorganisms, and allergens, into the mucosal tissues and circulatory system. Several compo-

nents barrier such as the adhesive mucous gel layer, Ig A, antibacterial peptides, and intercellular tight 

junctions (TJs) compose the intestinal barrier system. TJs has a crucial role in the physical barrier. TJs 

is a multiprotein complex located close at the apical portion of the transmembrane of epithelial cells. 

TJs consist of transmembrane proteins, including occluding (OCN), claudin (CL), and junctional adhe-

sion molecule A (JAMA), and cytosolic proteins, like zonula occludins (ZO) proteins (Suzuki, 2020). 

Intestinal barrier function also sensitive to nutritional status and intestinal microbiota plays a crucial role 

in host health and growth (Ma et al., 2017). Furthermore, the dietary composition is one of the important 

factors that can affect the gut microbiota in the gut which on its own may result in multiple physiological 

effects (Claesson et al., 2012).  

Dietary protein has short and long-term impacts in shaping the balance of gut microbiota. The effects 

of dietary protein on intestinal health are dependent on the sources of protein included in the diet result-

ing from different digestibility and specific amino acid compositions. It affects fermentation activities 

as well as the production of metabolites and derivative products (Ma et al., 2017). It had been reported 

that the composition of microbiota in the gut modulated after intake of casein and proteins isolated from 

plants (Day, 2013; Rist et al., 2014). Short-chain fatty acids (SCFAs) were abundantly produced in rats 

fed soy protein as high as SCFA-producing bacteria (Zhu et al., 2016) and casein increased the quantity 

of Lactobacillus and Bifidobacterium (Hongwei et al., 2011). The intestinal barrier strongly interacts 
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with gut microbiota and metabolites which affect specific immune responses to antigens, balancing tol-

erance, and effector immune responses (Takiishi et al., 2017). However, not enough data are available 

on how dietary proteins affect the intestinal barrier function in healthy mice. In this study, we experiment 

to investigate how dietary protein from casein, soybean, WPC, and egg white affect the intestinal barrier 

in the colon of mice. 

 

Material and Methods 

Material and chemicals 

Rabbit primary antibodies against ZO-1, ZO-2, OCN, CL-3, CL-4, and CL-7 were purchased from 

Thermo Fisher Scientific. IgG (an HRP-conjugated anti-rabbit) was purchased from Sera Care. Casein 

was purchased from New Zealand Dairy Board, Wellington. Egg white was purchased from Taiyo 

Kagaku. Whey protein concentrate (WPC), soybean protein powder, and other chemicals were pur-

chased from Wako Pure Chemical Industries.  

 

Animals  

Animals. All procedures were approved by the Animal Use Committee of the Hiroshima University 

and carried out according to the proper guidelines and regulations.  Female ICR mice aged six weeks 

and weighing ~27 g were purchased from Japan SLC and kept under conditions with controlled temper-

ature (22-24oC), humidity (40-60%), and lighting (light: 08.00-20.00) throughout the study. The mice 

were acclimatized to the new environment with free access to the control diet (AIN-93G) and distilled 

water (ad libitum) for one week before the start of the experiment.  

 

Experimental design 

Female ICR mice aged six weeks old (n=24) were adapted for one week to a standard diet based on 

AIN-93G before the start of the intervention. Thereafter, mice were assigned to 4 groups: casein, soy-

bean protein, whey protein concentrate (WPC), and egg white (n=6/group). Diet was prepared based on 

modified AIN-93G with 200g/kg egg white protein as fed based diet (Iwaya et al., 2011). Each 100 g 

diet contained 16.02 g protein. Bodyweight of each mouse was evaluated every day. After 28-day feed-

ing, all mice were sacrificed, and the blood of mice was collected from the abdominal vein which for 

LPS-binding protein (LBP) concentrations measurements. Colon was dissected and subjected to im-

munoblot analysis, while cecal contents were also collected for the determination of total SCFAs.  

 

Determination of plasma LBP 

The LBP concentration in mouse plasma was evaluated using a commercial ELISA Kit (Biometric) 

according to the standard protocol.  

 

Immunoblot analysis 

Colonic epithelial cells were isolated as described previously, with a few modifications. Summarily, 

3 cm in length of proximal colonic tissues were washed with saline and cut into small pieces. Colonic 

segments were put into 3 mL isolation buffer (Ca2+- and Mg2+- free HBSS supplemented with 0.1 mmol 

DTT/L, 5 mmol EDTA/L, as well as protease and phosphatase inhibitors) and keep for 1 h with gentle 

agitation and then firmly shaken to release the epithelial cells. The supernatants were centrifuged (5000 

rpm, 2 min, 4oC). The sediment (cell pellets) were subjected to immunoblot analysis of ZO-1, ZO-2, 

OCN, CL-3, CL-4, and CL-7 as explained previously (Hung & Suzuki, 2016). Densitometric analysis 

of specific bands on the immunoblots was used for quantification using Image J software.  

 

Determination of SCFAs  

The cecal contents were homogenized in distilled water (9 volumes of water) then centrifuged 

(13000 rpm, 10 min at 4oC). The resulting supernatant was diluted in distilled water (2 volumes) then 

deproteinized with 75% acetonitrile. Next, 20μL of 200mM 3NPH and 20μL of 120 mM WSCD were 

added into 40μL deproteinized supernatant to derivatize the sample. Then heat at 40oC in a water bath 

for 30 min. 100μL of 100μM crotonic acid derivative was added as an internal standard. Then it was 
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filtered and used for ultra-performance LC-MS to determine the organic acid concentrations. 

 

Statistical analysis 

All values are expressed as means followed by their SEMs. Statistical analysis was performed by 

ANOVA followed by the Tukey-Kramer post hoc test. A difference of p<0.05 was considered signifi-

cant. Pearson analysis was used to find the correlation between two variables. SPSS (version 21.0) was 

used to perform the general linear model procedure.  

 

Results and Discussion 

Growth performance, food intake, and water intake 

Total calories were equalized with carbohydrates and all groups fed with the same amount of pro-

tein. No differences between groups were observed in the growth performance of mice (Table 1; 

p<0.05). The food and water intake over the experimental period were not significantly different among 

the groups (p<0.05). All animals appeared to be healthy throughout the experiment. 

 

Table 1. Growth performance of mice 

Group Casein Soybean WPC Egg white       

Body weight (0d, g) 28.35±0.92 28.15±0.47 28.07±0.50 28.23±0.47 

Body weight (28d, g) 35.72±1.51 33.28±0.99 35.08±0.99 33.97±1.36 

Body weight gain (g) 7.37±0.88 5.13±0.60 7.02±0.76 5.73±1.08 

Food intake (g/day) 4.17±0.44 4.97±0.13 4.08±0.48 3.91±0.62 

Water intake (ml/day) 6.20±1.06 9.57±1.63 6.87±1.19 9.31±2.00 

 

Plasma LBP concentration 

Gram-negative bacteria produced lipopolysaccharide (LPS) which known as endotoxin. LPS could 

upregulate LPS-binding protein (LBP) expression in the liver if it enters the circulatory system. There-

fore, plasma LBP concentration is often used as a biomarker of intestinal barrier integrity (Tobias, Sol-

dau, & Ulevitvh, 1986).  

 

 

 

Figure 1. Plasma LBP concentration of female ICR mice fed casein, soybean, WPC, and egg white diets for 28 

days. Value is means  SEMs, n=6. 
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Figure 2. Expression of TJs proteins ZO-1, ZO-2, OCN, CL-3, CL-4, CL-7 in the colon of female ICR mice fed 

casein, soybean, WPC, and egg white diets for 28 days. Value is a means  SEMs, n=6. 

 

The data showed that mice fed with WPC had the highest LBP concentration (p<0.05) than those 

other groups, while the casein group showed the lowest plasma LBP concentration (Fig. 1; p<0.05). The 

soybean group had a higher LBP concentration compared to the casein (p<0.05) and egg white group. 

These results indicated that dietary protein sources affect gut-derived endotoxins level in blood serum. 

This may be associated with the role of intestinal tight junction in maintaining the barrier integrity which 

needs further investigation. 

 

Expression of tight junction proteins in colon of mice 

Expression levels of ZO-1, ZO-2, OCN, CL-3, CL-4, and CL-7 in the colon of mice was shown in 

Fig. 2. Casein and soybean groups showed a higher OCN expression (p<0.05) than WPC and egg white 

group. The Casein group also showed a higher expression of CL-7 (p<0.05) compared to other groups, 

while the soybean group was not significantly different compared to other proteins. There was no sig-

nificant difference in ZO-1, ZO-2, and CL-4 expression. However, the soybean group showed the high-

est expression of ZO-1 and ZO-2, whereas the WPC group had the highest expression of CL-4.  

 

Figure 3. Total SCFAs in cecal of female ICR mice fed casein, soybean, WPC, and egg white diets for 28 days.  

Value is a means  SEMs, n=6. 
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Here we show that different dietary protein sources modulate TJs expression of the colon. Each TJs 

protein has different functional properties. Several studies have explained that claudins are the main 

component and the backbone of TJs. CL-3 and -4 were served as barrier-forming which has a role in 

decreasing paracellular permeability, whereas CL-7 was categorized as pore-forming claudins that play-

ing roles in channel pores (increasing paracellular permeability) (Suzuki, 2013). ZO-1 binds directly to 

the cytoplasmic tails of claudin and occludin. Therefore, ZO-1 has been nominated as the main player 

within TJs barrier function. The function of occludin is not yet fully explained, but several studies indi-

cate that it has important roles in the TJs structure and maintain the permeability in the intestinal epithe-

lium.  

 

Total SCFAs in cecal of mice 

Unabsorbed/undigested food components that enter into the colon were fermented by gut microbi-

ota to generate SCFAs. In this study, we examined the total SCFAs in cecal of mice to investigate the 

role in regulating the intestinal barrier integrity. Figure 4 showed that different dietary protein sources 

did not significantly affect the total SCFAs in the cecal of mice(p<0.05).  

SCFAs are the main products from the fermentation activity by gut microbiota in the colon (Koh et 

al., 2016). The amino acid composition in various dietary protein sources may affect levels of SCFAs 

since different bacteria have a different substrate preference and generate different SCFAs. In the gut, 

some amino acids such as serine, threonine, glutamic acid, leucine, isoleucine, and arginine were me-

tabolized by specific bacteria to produced acetic acid. Propionate can be produced from proline and 

threonine, while butyrate can be produced from glutamic acid, threonine, histidine, serine, and pyroglu-

tamate (Dai et al., 2011). In this study, different dietary protein sources did not significantly affect the 

total SCFAs but it might affect the specific SCFAs which need further investigation.  

 

Correlation between tight junctions protein in colon with total SCFAs and plasma LBP 

Correlation analysis was done to evaluate the strength and possible relationship between two vari-

ables. To consider the role of SCFAs production in the regulation of the TJs expression and also the role 

of TJs in maintaining the barrier integrity, Pearson correlation coefficients between tight junction ex-

pression in the colon with plasma LBP and total SCFAs were calculated.  There were positive correla-

tions between ZO-1 and ZO-2 expression in the colon with total SCFAs (p<0.05) (Table 2; Fig. 4). 

These observations suggest that SCFAs could be contributed to the regulation of tight junction protein 

in the colon of mice. Surprisingly, there was a positive correlation between claudin-3 and LBP concen-

tration (p<0.05). 

Table 2. Correlation between TJs protein in colonic epithelial cells with total SCFAs 

  LBP Total SCFAs 

ZO-1 0.002 0.411* 

ZO-2 0.046 0.438* 

OCN -0.387 0.133 

Claudin-3 0.503* -0.314 

Claudin-4 0.136 -0.085 

Claudin-7 -0.001 0.055 
*p<0.05 according to Pearson correlation analysis 

ZO-1 and ZO-2 expression have a positive correlation with total SCFAs which might be contributed 
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by acetic, propionic, and butyric acid. Butyrate is commonly known as the main energy source for co-

lonocytes. It also protects against colorectal cancer and inflammation. Several studies persistently 

demonstrated that it can enhance intestinal barrier function. In the colon of rats and intestinal cells, 

propionic and acetic acids can increase TER and decrease permeability to Lucifer yellow in a dose-

dependent manner (Suzuki, Yoshida, & Hara, 2008; Koh et al., 2016). It needs further investigation to 

clarify the specific SCFAs from various dietary protein sources which have a role in regulating the TJs 

expression in the colon of mice and their mechanisms.  

Interestingly, we found that serum LBP concentration positively correlated with the expression of 

CL-3 in colonic epithelial cells. Claudin family commonly known as the key component and backbone 

of TJs and CL-3 was categorized as barrier-forming claudins which decrease paracellular permeability. 

This result was contradicting with the function of CL-3 to maintain the barrier function. However, in-

testinal mucin which secreted by goblet cells might also be responsible for the increase of serum LBP 

concentration, and further investigation was needed to clarify.  

 

Conclusion 

In conclusion, the expression of TJs protein in the colon of mice and plasma LBP concentration was 

altered by various dietary protein sources feeding. It suggests that dietary protein had a substantial in-

fluence on the modulation of intestinal barrier integrity. The SCFAs production may in part contribute 

to the observation although the clear mechanisms are still confused. Further investigations are needed 

to better understand the definite roles of dietary proteins in intestinal homeostasis.  
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