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ABSTRACT 
 
Cardiovascular disease (CVD) is one of the non-communicable diseases 
(NCDs) and 32% of the world's people die prematurely due to cardiovascular 
disease (WHO, 2022). The development of computing technology and 
artificial intelligence (AI), especially Deep Learning (DL), has contributed 
significantly to helping medical personnel carry out initial pre-diagnosis and 
classification of heart disease. In this study, we limit heart rhythm detection 
research into two categories, namely, Normal (N) and Abnormal (An) which 
are visualized in a standardized amplitude vs time diagram on the PTBDB 
dataset. The classification model in this research uses the 1-dimensional 
Deep Neural Network (1D-DNN) Visual Geometry Group, namely, VGG11, 
VGG13, VGG16, and VGG19. The denoising technique presented in this study 
on each ECG data sample thereby improving the quality of training data for 
the AI detection model. The performance of the VGG16 model shows the best 
training and validation accuracy with the lowest loss, which is 97.85% 
accuracy; 97.99% precision; 99.75% recall; and 98.52% f1-score. In this way, 
medical personnel will be helped more quickly in efforts to prevent and 
control heart disease that occurs in society, especially in the lower middle 
class. Further research needs to be done to use VGG with more blocks if the 
structure of the dataset to be classified is much more complex. 
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Introduction 

Cardiovascular diseases (CVD) are a type of non-communicable disease (NCD) and are the 
leading cause of premature death worldwide. According to the World Health Organization (WHO), 
in 2019, approximately 17.9 million people, which is equivalent to 32% of the global population, 
died from cardiovascular disease. Of this number, around 85% were affected by heart disease and 
stroke, and 30% of deaths occurred in people under the age of 70. This trend is also reflected in 
Indonesia, where heart disease is the leading cause of death among the productive age group every 
year (World Health Organization, 2022). Heart abnormalities can come from various factors such 
as congenital, hereditary heart structure abnormalities, or can also be due to an unhealthy lifestyle 
such as diet, smoking, or inaccuracy in doing heavy work or exercise (Rossignol et al., 2019). Based 
on the damage or abnormality experienced and the cause, heart disease is grouped into several 
types, namely coronary heart disease, congenital heart disease, arrhythmia, and endocarditis. 
Early detection of heart abnormalities can be performed by checking the condition of the heart 
with tools such as an electrocardiogram (ECG). 

Along with the development of computing technology in carrying out the task of classifying 
disease symptoms, the role of artificial intelligence (AI), especially Deep Learning (DL) or Machine 
Learning (ML), has contributed significantly to big data which continues to increase in real-time 
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and in complexity in the health sector. The presence of AI, especially through DL or ML algorithms, 
will help medical personnel to pre-diagnose the symptoms of a disease, including cardiovascular 
diseases such as heart disease (Li et al., 2022). 

Electrocardiogram is a technique in the world of medicine, especially in the heart, which uses 
an electrocardiogram machine to record changes in the heart's electrical activity while the heart 
is in the circulatory cycle phase of circulating red blood cells throughout the body (World Health 
Organization, 2022). ECG is a tool consisting of 12 leads that can record heart activity by placing 
several electrodes in the thorax area. This recording will produce an image of the heart activity 
that occurs so that it can also record any abnormalities in the form of ECG graph paper. Proper 
classification of the disease allows for more focused treatment (Hernandez-Matamoros et al., 
2020). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. An electrocardiogram machine provides information on how fast the heart beats, whether there is 
a normal or abnormal heart rhythm pattern, how strong the amplitude of the heart rhythm is, and the timing 
of electrical signals that occur during the blood circulation cycle in the body 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Example of a normal ECG (Jankowska-Polańska et al., 2022) 

 
Based on information from the World Health Organization (WHO), several people in the 

world die every year accompanied by symptoms of arrhythmia (daviddalpiaz.github.io., 2022). 
Symptoms of arrhythmia are an abnormal pattern of electrical impulses to the myocardium, such 
as the heart beating too fast or too slow so that the heart's work in pumping blood does not work 
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effectively and can cause death. In a healthy heart, arrhythmia conditions still often occur. How-
ever, if it occurs continuously, it can indicate a problem with the heart organ. Symptoms of ar-
rhythmia can include dizziness, fatigue, or chest pain. However, arrhythmia can also occur without 
any symptoms, so the sufferer is not aware of it (Jankowska-Polańska et al., 2022). Judging from 
the signal, arrhythmia can be seen from abnormal heart rate (HR) per minute over a long record-
ing duration.  

In this study, we limited heart rhythm detection research into two categories, namely normal 
(N) and abnormal (A). Therefore, heart rhythm detection is important in carrying out initial pre-
diagnosis in carrying out appropriate medical action in the subsequent process. 
 
Material and Methods 

This chapter presents the PTB ECG Signal Datasets, including a preprocessing dataset and 
several proposed methods of Visual Geometry Group (VGG). The research plan flowchart is shown 
in Figure 3.  

 

Figure 3. The flowchart research plan 

 
PTB ECG signal dataset 

Physikalisch-Technische Bundesanstalt (PTB) signal dataset, the National Metrology Institute 
of Germany, has provided this compilation of digitized ECGs for research, algorithmic 
benchmarking, or teaching purposes to the users of Physio Net. The database contains 549 records 
from 290 subjects (aged 17 to 87, mean 57.2; 209 men, mean age 55.5, and 81 women, mean age 
61.6; ages were not recorded for 1 female and 14 male subjects). Each subject is represented by 
one to five records. Each record includes 15 simultaneously measured signals: the conventional 
12 leads together with the 3 Frank lead ECGs (Bjor, 2019; Bousseljot et al., 2009; Goldberger et al., 
2020). 

 
 
 
 
 
 
 
 

Figure 4. Normal (N) and Abnormal (An) heartbeat rhythm types are visualized in a standardized amplitude 

vs time diagram on the PTBDB dataset (Bjor, 2019; Bousseljot et al., 2009; Goldberger et al., 2020). 

 

Visual Geometry Group (VGG) blocks 
The idea of using blocks first emerged from the Visual Geometry Group (VGG) at Oxford 

University, in their eponymously-named VGG network. It is easy to implement these repeated 
structures in code with any modern deep-learning framework by using loops and subroutines 
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(Zhang et al., 2023). The basic building block of CNNs is a sequence of the following (Mathworks, 
2023):  

(i) a convolutional layer with padding to maintain the resolution,  
(ii) a nonlinearity such as a ReLU,  
(iii) a pooling layer such as max pooling to reduce the resolution. 
 
One of the problems with this approach is that the spatial resolution decreases quite rapidly. 

This imposes a hard limit of 𝑙𝑜𝑔2 𝑑  convolutional layers on the network before all dimensions are 
used up. The key idea was to use multiple convolutions between down sampling via max-pooling 
in the form of a block. They were primarily interested in whether deep or wide networks perform 
better.  

A VGG block consists of a sequence of convolutions with 3×3 kernels with padding of 1 
(keeping height and width) followed by a 2×2 max-pooling layer with a stride of 2 (halving height 
and width after each block). We define a function called vgg_block to implement one VGG block. 
The function below takes two arguments, corresponding to the number of convolutional 
layers number of convolutions, and the number of output channels number of channels (Zhang et 
al., 2023). 

Figure 5. The architecture of VGG Blocks 

 
VGG network 

The original VGG network had five convolutional blocks, among which the first two have one 
convolutional layer each and the latter three contain two convolutional layers each. The first block 
has 64 output channels and each subsequent block doubles the number of output channels until 
that number reaches 512. Since this network uses eight convolutional layers and three fully 
connected layers, it is often called VGG-11.  

The similarities in the structure of VGG11, VGG13, VGG16, and VGG19 lie in the convolutional 
layer, max-pooling, and fully connected layer. Meanwhile, the difference lies in the number of con-
volution blocks. VGG11, VGG13, VGG16, and VGG19 have several convolutional blocks of 8, 10, 13, 
and 16 respectively. VGG16 (also called Oxford Net) is a convolutional neural network 
architecture named after the Visual Geometry Group from Oxford, which developed it. It was used 
to win the ILSVR (ImageNet) competition in 2014. The key difference is that the convolutional 
layers are grouped in nonlinear transformations that leave the unchanged dimension, followed by 
a resolution-reduction step (Zhang et al., 2023). 
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Comparative analysis 
The following table also offers a chronological summary of three performance metrics: 

Accuracy (Acc), Sensitivity (Se), and Specificity (Sp) for each DL classifier. 
 

 Table 1. Deep learning classifier 

 
FPR (False Positive Rate) represents the proportion of healthy patients wrongly identified as sick. 

FNR (False Negative Rate) represents the proportion of sick patients wrongly identified as healthy. 

Sensitivity (True Positive Rate) represents the proportion of sick patients who are correctly identified as 

such. Sensitivity (Se), or the True Positive Rate (TPR), is the proportion of actual positives (arrhythmias) 

correctly recognized by the model. It is critical in medical diagnostics since high sensitivity suggests 

that the model can reliably detect arrhythmias, lowering the possibility of false negatives.   
 

Equations: 

False Positive Rate  =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 ……………………………………………………………………………………….(1) 

False Negative Rate  =
𝐹𝑁

𝐹𝑁+𝑇𝑃
 ……………………………………………………………………………………..(2) 

Sensitivity = True Positive Rate =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 …………………………………………………………………….(3) 

Specificity = True Negative Rate =
𝑇𝑁

𝑇𝑁+𝐹𝑃
…………………………………………………………………….(4) 

Youden index  = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1…………………………………………………………..(5) 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ………………………………………………………………………………….………..(6) 

 
A model with inadequate sensitivity may fail to detect critical abnormalities, potentially 

resulting in serious health consequences.  
Specificity (True Negative Rate) represents the proportion of healthy patients correctly 

identified as such. Specificity (Sp), also known as the True Negative Rate (TNR), is the proportion 
of real negatives (no arrhythmias) that are accurately detected. In essence, it indicates the model’s 
ability to prevent incorrect diagnosis. This property is significant because a poor specificity model 
may result in unnecessary treatments or tests due to many false positives. This metric is important 
when gauging the overall reliability of a model.  

Youden index is a measure of how well a diagnostic test can distinguish between sick and 
healthy patients. Accuracy represents the proportion of correct diagnoses among all patients, 
whether sick or healthy. 

Accuracy (Acc) is an essential performance measure in classification problems. It assesses a 
model’s overall accuracy by computing the proportion of total predictions the model correctly 
predicted, including positives (arrhythmia) and negatives (no arrhythmia). While accuracy gives 
a rapid overview of how well a model performs, it does not provide precise details about how well 
it performs on particular classes, which is especially important when the dataset is imbalanced. 

Taken together, these three metrics: accuracy, sensitivity, and specificity, provide a more 
holistic and nuanced view of the performance of a DL model in the context of ECG arrhythmia 

                   Manual Counting (actual) 
Machine  
Learning (predicted) 
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detection and classification. They provide a balanced evaluation that accounts for overall 
performance and the accuracy of class identification, ensuring that the model performs well across 
all categories and does not overlook any one category. 
 
Propose preprocessing method 

In the proposed preprocessing method, two features are used: slicing and smoothing. The 
slicing feature captures the P-Q-R-S-T wave pattern, while the smoothing feature reduces the 
noise of the ECG PTB signal datasets. 
 
Moving average filter 

The moving average is the most common filter in digital signal processing (DSP), mainly 
because it is the easiest digital filter to understand and use. Despite its simplicity, the moving 
average filter is optimal for a common task: reducing random noise while retaining a sharp step 
response. This makes it the premier filter for time-domain-encoded signals. As the name implies, 
the moving average filter operates by averaging a set of points from the input signal to produce 
each point in the output signal. In equation form, this is written: 

 

𝑦[𝑖] =
1

𝑀
∑ 𝑥[𝑖 + 𝑗]𝑀−1

𝑗=0 ……………………………………………………………………………………(7) 

 
In this equation, 𝑥[ ] is the input signal, 𝑦[ ] is the output signal, and 𝑀 is the number of points 

used in the moving average. This equation only uses points on one side of the output sample being 
calculated. A moving average filter smooths data by replacing each data point with the average of 
the neighboring data points defined within the span.  

The moving average smoothing method used by the Curve Fitting Toolbox follows these rules: 
• The span must be odd. 
• The data point to be smoothed must be at the center of the span. 
• The span is adjusted for data points that cannot accommodate the specified number of 

neighbors on either side. 
• The endpoints are not smooth because a span cannot be defined. 

Note that the filter function can be used to implement different equations such as the one 
shown above. However, because of the way that the endpoints are treated, the toolbox moving 
average result will differ from the result returned by the filter. 

The differences between original signals (Normal and Abnormal) and smoothed signals are 
shown in Figure 6. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Original signals and smoothed signals (Normal and Abnormal) 
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Results and Discussion 
Preprocessing ECG signal datasets 

In the original ECG signal datasets, there are 10,506 rows x 187 columns for Abnormal data 
and 4046 rows x 187 columns for Normal data. Figure 4 shows that in the data there are noise/out-
liers that need to be carried out by denoising techniques which are expected to have the impact of 
increasing accuracy results in classifying arrhythmias. The cutting technique is carried out for 
each existing data, namely cutting 6 columns on the left and right of the data to remove extreme 
peak waves so that the data collected later can reduce existing noise/outliers as shown in Figure 
7.  

Next, a mean filter technique is carried out for each dataset to produce a smoother image 
(smoothing technique) as shown in Figure 6. As explained above, this can reduce random noise 
while retaining a sharp step response. It is important to note that the synthesized electrocardio-
gram (ECG) signals displayed noticeable noise. The origin of this noise can be attributed to inher-
ent flaws present in the original ECG dataset, such as truncations and irregular waveform patterns. 
Finally, resizing was carried out by adding columns and grouping the data based on Normal (0) 
and Abnormal (1) at the end of the column, namely column 188. After going through the denoising 
technique, there were 8404 data trains for Abnormal and 3236 data trains for Normal with a total 
of 11,640 rows x 188 columns. 
 

Figure 7. ECG signal datasets after Cutting technic 

 
1D-CNN classification model 

To evaluate the effectiveness of the enhanced synthesized data, this study utilized a 1D-CNN 
as an experimental model. One of the key advantages of the one-dimensional convolutional neural 
network (1D-CNN) model comes from its ability to effectively determine the information found in 
one-dimensional data signals. The present model demonstrates proficiency in enhancing the 
extraction of structural information from single-dimensional vector datasets by applying its 
convolutional layers. After the application of the convolutional layers, batch normalization layers 
are utilized to improve the stability and effectiveness of the model. In the context of neural 
networks, Maximum Pooling layers are employed to decrease the dimensions of the data, thereby 
reducing the overall complexity of the data. The CNN architecture is characterized by its efficiency, 
which is evident through its low complexity, fast processing speed, and ability to achieve 
comparable results with fewer training samples when compared to other conventional neural 
network models.  
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The present model consists of a total sum of 22.694.226 parameters, each of which possesses 
the capacity for training. The architecture of the 1D-CNN model is characterized by its simplicity, 
consisting of three convolutional layers that are augmented with batch normalization and max 
pooling layers to reduce dimensionality. Additionally, the model includes two dense layers and 
employs a softmax activation function to assign data samples to their respective class 
probabilities. Consequently, this model may require reduced training durations and exhibit 
decreased memory usage. However, its ability to depict complex characteristics may be limited. 

The hyperparameters used in the training procedure consist of batch size and epochs. The 
selection of a batch size of 128 is motivated by the observation that smaller batch sizes generally 
produce the regularization effect and lead to a reduction in generalization error. Computational 
efficiency is a notable characteristic of these methods, as they show faster convergence rates 
compared to using the complete dataset. In contrast, the epoch is designated as 25, suggesting the 
total number of iterations through the training dataset. An insufficient number of epochs may give 
rise to underfitting, whereas a large number of epochs can potentially result in overfitting. 
Consequently, following a series of experiments and considering the dataset's size and 
characteristics, it was determined that 25 epochs provided the most effective approach.  

Figure 8 shows that the accuracy during the training and validation processes does not 
encounter any major difficulties. However, between the 1st and the 3rd epochs, underfitting 
occurred in the error rates for both training and validation. This underfitting indicates that the 
model may have been overly simple or the learning rate excessive, which prevented the model 
from accurately capturing the underlying trend of the data. This problem could be resolved by 
modifying the architecture or tuning other hyperparameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Accuracy and loss in training model 
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The confusion matrix, as shown in Figure 9, can be used to evaluate the effectiveness of the 
1D-CNN. In this matrix, it is clear that the validation outcomes, derived from the weights estimated 
by the 1D-CNN model, demonstrate a high level of excellence. This observation is confirmed by 
the main diagonal, which extends from the top-left to the bottom-right and shows values of 99% 
and 97%. This indicates that work performance is quite good in direct proportion to the research. 

 
Figure 9. Matrix confusion for the 1D-CNN model classification 

Visual Geometry Group (VGG) model 
In previous research, biometric authentication speed increased with more stable results on 

the ECG-ID database set and the MIT-BIH Arrhythmia Database resulting in approximately 99% 
accuracy on both datasets. By using a less dense VGG block architecture network, the proposed 
method improves the classification accuracy more than the previously proposed scheme (Venkata 
et al., 2022). 
 
Table 2. State of the art 

Model Previous Re-
search 

Aspect Dataset (Object) Performance 

VGG (Venkata et 
al.,2022) 

This network utilizes a 
far simpler block archi-
tecture inspired by VGG 

architecture, and the 
less dense architecture 

improves speed.  

ECG-ID and ECG 
Signal MIT-BIH 

99% accu-
racy 

CNN (AlexNet, 
ResNet-50, In-

ceptionNet, and 
VGG-16) 

(Nursalim et 
al., 2023) 

classify 5 types of ar-
rhythmia disorders 

from the MIT-BIH data-
base 

ECG Signal MIT-
BIH 

97.55% for 
VGG-16 ac-

curacy 

VGG (Rajendra et 
al., 2022) 

VGG architecture and 
the less dense architec-

ture improve speed 

ECG Signal MIT-
BIH 

94.03% and 
93.47% for 

accuracy 
VGG16, Incep-

tion V3, 
Alexnet 

(Naz et al., 
2021) 

heuristic Entropy Cal-
culation 

ECG Signal MIT-
BIH 

97.60% for 
accuracy 

 
Nursalim et al. (2023), and Atmadja et al. (2022) wrote that preprocessing techniques for 

smoothing ECG signals are important to increase the accuracy of deep learning models that use 
extraction features in convolution neural network architectures, including CNN models and VGG 
models. The results show that the accuracy value reached 97.55% for VGG16, while in Hendrico's 
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research, it was said that the best way to determine the effectiveness of the 1D-CNN classification 
when used with GANs-Transformer reconstructed data is to use a confusion matrix. The perfor-
mance was excellent because the diagonal representation of 100% indicates perfect class predic-
tion. This perfection refers to precision, recall, and F1-Score that are at their best and underlie the 
model's accuracy in identifying positive cases without false negatives.  

In his research, Rajendra developed a 9-layer deep convolutional neural network (CNN) to 
automatically identify 5 different heart rate categories in original and noise-attenuated ECG sig-
nals derived from publicly available databases. Artificially, the dataset was augmented to average 
the number of occurrences of 5 classes of heartbeats and filtered to remove high-frequency noise. 
The CNN was trained using additional data and resulted in accuracies of 94.03% and 93.47% in 
heart rate diagnostic classification. When the CNN is trained with highly imbalanced data (original 
dataset), the accuracy of the CNN reduces to 89.07%% and 89.3% on noisy and noise-free ECGs 
(Rajendra et al., 2017). 

Meanwhile, Mahwish Naz proposed a new deep-learning approach to detect ventricular ar-
rhythmias. Initially, ECG signals were converted into images that had never been done before. 
Then, the images are normalized and used to train the VGG-16 model via deep learning methods. 
Transfer learning is performed to train the model and extract deep features from different output 
layers. After that, the features are combined by a pooling approach, and the best feature is selected 
using a heuristic entropy calculation approach. Finally, a supervised learning classifier is used for 
final feature classification. The results were evaluated on the MIT-BIH dataset and an accuracy of 
97.6% was achieved (using support vector machine cubic as the final stage classifier) (Naz et al., 
2021). 
 
Table 3. Comparison of model result 

No Model Number of Parameters 
  

Accu-
racy 

Preci-
sion 

Recall f1_score 

1 VGG11 
Total params: 20585038 (78.53 MB) 
Trainable params: 20583740 (78.52 MB) 
Non-trainable params: 1298 (5.07 KB) 

94.19% 93.96% 99.14% 96.29% 

2 VGG13 
Total params: 21316588 (81.32 MB) 
Trainable params: 21314976 (81.31 MB) 
Non-trainable params: 1612 (6.30 KB) 

95.95% 95.36% 99.27% 97.27% 

3 VGG16 
Total params: 22694226 (86.57 MB) 
Trainable params: 22691346 (86.56 MB) 
Non-trainable params: 2880 (11.25 KB) 

97.85% 97.99% 99.75% 98.52% 

4 VGG19 
Total params: 24311978 (92.74 MB) 
Trainable params: 24307494 (92.73 MB) 
Non-trainable params: 4484 (17.52 KB) 

96.00% 95.42% 99.49% 97.35% 

 
Arslan (2022) said that the focus of his research is to establish an efficient computer-aided 

diagnosis approach that detects HVD using phonocardiogram (PCG) signals. The proposed ap-
proach uses traditional time-frequency and deep features with machine learning models. Time-
frequency features are extracted from nonlinear measurements using discrete wavelet transform 
(DWT), wavelet packet transform (WPT), perceptual wavelet packet transform (PWPT), and em-
pirical mode decomposition (EMD) methods. Deep features are extracted from a pre-trained CNN 
model VGG16 and a multilayer extreme learning machine (ML-ELM) using a scalogram image of 
the PCG signal. The recursive feature elimination (RFE) algorithm is applied to all features and the 
most typical features are selected.  
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In this research, the VGG11, VGG13, VGG16, and VGG19 models each show different perfor-
mances. The VGG-16 model is one of the models that provide promising results which is quoted 
from the research results of Rashed, et al which shows accuracy approaching 100% for the MIT-
BIH dataset (Rashed-Al-Mahfuz, 2021) which is directly proportional to the results of this re-
search which uses ECG signal datasets. Based on the results of this research, the data were ob-
tained as shown in Table 3.   

This research has initiated discussions with experts in the field of cardiology to validate the 
congruence between the synthesized results and the anticipated outcomes, particularly 
concerning the "normal" and "arrhythmia" categories. These categories will be the focus of future 
investigations. The synthesized results will be combined with the training dataset for the 
classification model of one-dimensional deep neural networks. 

There are various methods and models used to classify arrhythmias using electrocardiogram 
signals. The model we proposed shows a linear correlation with previous researchers even though 
some hyperparameters have not reached the expected target. 
 
Conclusion 

The performance of the VGG16 model shows the best training and validation accuracy with 
the lowest loss, which is 97.85% accuracy; 97.99% precision; 99.75% recall; and 98.52% f1-score. 
Further research needs to be done to use VGG with more blocks if the structure of the dataset to 
be classified is much more complex. 
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