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Abstract  
 
This research proposes intelligent system programming based on Fuzzy and Artificial Neural Networks 
(ANN). Programming is built using the Python Programming Language. The control system is used 
based on Proportional Integral Derivative (PID) Controller, where the gain tuning uses Fuzzy and 
ANN. The research stages include the preparation of plant models, fuzzy and ANN programming 
libraries using Python. And then how to show the performance of the Intelligent Control System that 
was built in the form of a simulation. 
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INTRODUCTION 

Now intelligent control systems play an important role in the industrial world. It is undeniable that two of the 
intelligent system algorithms that are often used today are fuzzy systems and artificial neural networks. So that fuzzy-
based and neural network-based intelligent control systems are often the solution to current intelligent system control. 
Meanwhile the Proportional Integral Derivative (PID) based control system remains the mainstay of the industry up 
to now. In turn, so that the development of intelligent system technology can contribute to the development of 
current control technology, PID controllers are combined with intelligent systems. In this case, especially fuzzy-based 
and neural networks. The method that allows for the incorporation of PID with an artificial intelligence system, is 
during the process of selecting the best gain from PID. In the term control this is called tuning or generally called 
PID gain tuning. 

In the current development, research on PID gain tuning based on fuzzy and neural networks has been done a 
lot. But it is still interesting to develop. It is proven that until now there are still many studies on this matter. Some of 
them can be mentioned as follows. PID gain tuning uses a fuzzy system as described in the following papers: 
(Rodríguez-Castellanos, Grisales-Palacio, & Cote-Ballesteros, 2018), (El-samahy & Shamseldin, 2018), (Dettori, 
Iannino, Colla, & Signorini, 2018), (Khan, Pasupuleti, & Jidin, 2018), (Asgharnia, Shahnazi, & Jamali, 2018), 
(Gheisarnejad, 2018), (Verma, Manik, & Jain, 2018), (Huang et al., 2018), (Huang et al., 2018). PID gain tuning uses 
artificial neural networks, among others, as described in the following papers: (Yu, 2018), (Anh, 2010), (Milovanović 
et al., 2016), (Attaran, Yusof, & Selamat, 2016), (Fang, Zhuo, & Lee, 2010), (Chu & Teng, 1999). 

Furthermore, to realize how fuzzy algorithms and neural networks can be implemented in hardware controls, 
especially those using PID controllers, the Python programming language can be one of the best alternative choices. 
At least from its open source nature and very complete and reliable library support. So this study proposes the use of 
the Python programming language for the implementation of fuzzy and neural algorithms used for PID gain tuning. 
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METHODS 

The intelligent control system designed is PID based. The PID controller in its work automatically adjusts the 
control output based on the difference between the set point (SP) and the measured process variable (PV), as a 
control error e(t). The controller output value u(t) is transferred as the system input. Each relationship is used as 
shown in Equations (1) and (2). 

 

        (1) 

  (2) 

The term ubias is a constant that is usually set to the value u(t) when the first controller switches from manual 
mode to automatic mode. This gives a "bumpless" transfer if the error is zero when the controller is turned on. The 
three tuning values for the PID controller are controller gain, Kc, integral time constant, τI, and derivative time 
constant, τD. The value of Kc is a multiplier on proportional errors and the terms integral and higher values make 
the controller more aggressive in response to errors from the set point. The integral time constant, τI, (also known as 
integral reset time) must be positive and have a unit of time. Because τI is getting smaller, the term integral is bigger 
because τI is in the denominator. The constant time derivative, τD also has a unit of time and must be positive. The 
set point (SP) is the target value and the process variable (PV) is a measured value that may deviate from the desired 
value. The error of the set point is the difference between SP and PV and is defined as e(t) = SP - PV. 

Furthermore, for implementation purposes Discrete PID Controller is used. The digital controller is 
implemented with a discrete sampling period and a separate form of the PID equation is needed to estimate the 
integral of errors and derivatives. This modification replaces the continuous form of the integral with the sum of 
errors and uses Δt as the time between sample sampling and nt as the number of samples taken. It also replaces 
derivatives with derivative versions or other methods filtered to estimate instant slope (PV). Equation (2) if stated in 
digital form as shown in Equation (3). 

          
    (3) 

 
From Equation (3) it can be seen 3 determinants of the success of the control process, namely Kc, τI and τD. 

The search process or setting to obtain the best gain from Kc, τI and τD is called the gain tuning process. In this 
study, the tuning process is proposed using fuzzy and artificial neural network. The PID gain tuning process uses 
fuzzy and artificial neural networks that we propose as shown in Figure 1 and Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. PID gain tuning using Fuzzy 
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Figure 2. PID gain tuning using artificial neural network 

 
The fuzzy system design for the PID gain tuning process as shown in Figure-1 requires at least a mechanism for 

how to make gain adjustments from PID (Kc, τI and τD), based on reading errors e(t) and delta error Δe(t). A 
reading of errors and delta error is used to decide whether or not to change the PID gain. If the error has converged 
towards zero, then the existing gain is maintained. But if it is still far from converging towards zero, it is necessary to 
change the gain following the rule that has been designed. The fuzzy system for this purpose is shown in Figure-3. 
Fuzzy system rules for changing gain are shown in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3. Fuzzy System Design 
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Table 1. Fuzzy Rule System 

Rule 
Input Output 

error delta_error 
   

1 SE SDE S1 S2 S3 

2 SE MDE S1 S2 S3 

3 SE BDE S1 S2 S3 

4 ME SDE M1 M2 M3 

5 ME MDE M1 M2 M3 

6 ME BDE M1 M2 M3 

7 BE SDE B1 B2 B3 

8 BE MDE B1 B2 B3 

9 BE BDE B1 B2 B3 

 
The artificial neural network design for the PID gain tuning process, as shown in Figure-2, requires a 

mechanism for making gain adjustments from PID (Kc, τI and τD), based on reading errors e(t) and delta error 
Δe(t). A reading of errors and delta error is used to decide whether or not to change the PID gain. If the error has 
converged towards zero, then the existing gain is maintained. But if it is still far from converging towards zero, it is 
necessary to change the gain by generating artificial neural network weights. The artificial neural network architecture 
for this purpose is shown in Figure 4. 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Artificial neural network architecture for PID gain tuning 

 
RESULT AND DISCUSSION 

To realize how the Python implementation for the PID gain tuning process, Python simulation is first made for the 

control system using PID, with a manual tuning process. If the manual tuning process has been successful, the task of 

the fuzzy system and the artificial neural network is to imitate the tuning process and choose PID gain which has the 

best control effect. Python programming for manually controlling simulation with PID controller, with a linear plant 

model, is shown in the following program. 
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import numpy as np 

import matplotlib.pyplot as plt 

from scipy.integrate import odeint 

import ipywidgets as wg 

from IPython.display import display 

n = 100 # time points to plot 

tf = 50.0 # final time 

SP_start = 2.0 # time of set point change 

 

def process(y,t,u): 

    Kp = 4.0 

    taup = 3.0 

    thetap = 1.0 

    if t<(thetap+SP_start): 

        dydt = 0.0  # time delay 

    else: 

        dydt = (1.0/taup) * (-y + Kp * u) 

    return dydt 

 

def pidPlot(Kc,tauI,tauD): 

    t = np.linspace(0,tf,n) # create time vector 

    P= np.zeros(n)          # initialize proportional term 

    I = np.zeros(n)         # initialize integral term 

    D = np.zeros(n)         # initialize derivative term 

    e = np.zeros(n)         # initialize error 

    OP = np.zeros(n)        # initialize controller output 

    PV = np.zeros(n)        # initialize process variable 

    SP = np.zeros(n)        # initialize setpoint 

    SP_step = int(SP_start/(tf/(n-1))+1) # setpoint start 

    SP[0:SP_step] = 0.0     # define setpoint 

    SP[SP_step:n] = 4.0     # step up 

    y0 = 0.0                # initial condition 

    # loop through all time steps 

    for i in range(1,n): 

        # simulate process for one time step 

        ts = [t[i-1],t[i]]         # time interval 

        y = odeint(process,y0,ts,args=(OP[i-1],))  # compute next step 

        y0 = y[1]                  # record new initial condition 

        # calculate new OP with PID 
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        PV[i] = y[1]               # record PV 

        e[i] = SP[i] - PV[i]       # calculate error = SP - PV 

        dt = t[i] - t[i-1]         # calculate time step 

        P[i] = Kc * e[i]           # calculate proportional term 

        I[i] = I[i-1] + (Kc/tauI) * e[i] * dt  # calculate integral term 

        D[i] = -Kc * tauD * (PV[i]-PV[i-1])/dt # calculate derivative term 

        OP[i] = P[i] + I[i] + D[i] # calculate new controller output 

         

    # plot PID response 

    plt.figure(1,figsize=(15,7)) 

    plt.subplot(2,2,1) 

    plt.plot(t,SP,'k-',linewidth=2,label='Setpoint (SP)') 

    plt.plot(t,PV,'r:',linewidth=2,label='Process Variable (PV)') 

    plt.legend(loc='best') 

    plt.subplot(2,2,2) 

    plt.plot(t,P,'g.-',linewidth=2,label=r'Proportional = $K_c \; e(t)$') 

    plt.plot(t,I,'b-',linewidth=2,label=r'Integral = $\frac{K_c}{\tau_I} \int_{i=0}^{n_t} e(t) \; dt $') 

    plt.plot(t,D,'r--',linewidth=2,label=r'Derivative = $-K_c \tau_D \frac{d(PV)}{dt}$')     

    plt.legend(loc='best') 

    plt.subplot(2,2,3) 

    plt.plot(t,e,'m--',linewidth=2,label='Error (e=SP-PV)') 

    plt.legend(loc='best') 

    plt.subplot(2,2,4) 

    plt.plot(t,OP,'b--',linewidth=2,label='Controller Output (OP)') 

    plt.legend(loc='best') 

    plt.xlabel('time') 

     

Kc_slide = wg.FloatSlider(value=0.1,min=-0.2,max=1.0,step=0.05) 

tauI_slide = wg.FloatSlider(value=4.0,min=0.01,max=5.0,step=0.1) 

tauD_slide = wg.FloatSlider(value=0.0,min=0.0,max=1.0,step=0.1) 

wg.interact(pidPlot, Kc=Kc_slide, tauI=tauI_slide, tauD=tauD_slide) 

 

 

The purpose of using fuzzy systems and artificial neural networks is how to do the PID gain tuning process, 

which is to find the appropriate Kc, τI and τD values, so that the best control results are obtained. Good control 

results are indicated by a significant decrease in error. An example of implementing fuzzy based PID gain tuning 

programming using the Python programming language is partly shown in the following program script. 
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# Import NumPy and scikit-fuzzy 

import numpy as np 

import skfuzzy as fuzz 

 

# Generate universe functions 

ERROR       = np.arange(0, 5, 0.01) 

DELTA_ERROR = np.arange(0, 5, 0.01) 

 

Kc   = np.arange(-0.2, 1.0, 0.01) 

tauI = np.arange(0.01, 5.0, 0.01) 

tauD = np.arange(0.0, 1.0, 0.01) 

 

# Membership functions for ERROR 

SE = fuzz.gaussmf(ERROR, 0.01, 0.8495)    

ME = fuzz.gaussmf(ERROR, 2.5, 0.8495)   

BE = fuzz.gaussmf(ERROR, 5, 0.8495)   

 

# Membership functions for DELTA_EROR 

SDE = fuzz.gaussmf(DELTA_ERROR, 0.01, 0.8495)  

MDE = fuzz.gaussmf(DELTA_ERROR, 2.5, 0.8495)  

BDE = fuzz.gaussmf(DELTA_ERROR, 5, 0.8495)  
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# Membership functions for OUTPUT_Kc, OUTPUT_tauI, OUTPUT_tauD  

S1 = fuzz.gaussmf(Kc, -0.2, 0.2039)   

M1 = fuzz.gaussmf(Kc, 0.4, 0.2039)   

B1 = fuzz.gaussmf(Kc, 1, 0.2039)   

 

S2 = fuzz.gaussmf(tauI, 0.01, 0.8476)   

M2 = fuzz.gaussmf(tauI, 2.505, 0.8476)   

B2 = fuzz.gaussmf(tauI, 5, 0.8476)   

 

S3 = fuzz.gaussmf(tauD, 6.939e-18, 0.1699)   

M3 = fuzz.gaussmf(tauD, 0.5, 0.1699)   

B3 = fuzz.gaussmf(tauD, 1, 0.1699)   

 

def ERROR_category(ERROR_in = 5): 

    ERROR_cat_SMALL   = fuzz.interp_membership(ERROR, SE, ERROR_in)  

    ERROR_cat_MEDIUM  = fuzz.interp_membership(ERROR, ME, ERROR_in)  

    ERROR_cat_BIG     = fuzz.interp_membership(ERROR, BE, ERROR_in)  

    return dict(SMALL_ERROR = ERROR_cat_SMALL, MEDIUM_ERROR = ERROR_cat_MEDIUM, 

BIG_ERROR = ERROR_cat_BIG) 
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def DELTA_ERROR_category(DELTA_ERROR_in = 5): 

    DELTA_ERROR_cat_SMALL   = fuzz.interp_membership(DELTA_ERROR, SDE, DELTA_ERROR_in)  

    DELTA_ERROR_cat_MEDIUM  = fuzz.interp_membership(DELTA_ERROR, MDE, 

DELTA_ERROR_in)  

    DELTA_ERROR_cat_BIG     = fuzz.interp_membership(DELTA_ERROR, BDE, DELTA_ERROR_in)  

    return dict(SMALL_DELTA_ERROR = DELTA_ERROR_cat_SMALL, MEDIUM_DELTA_ERROR = 

DELTA_ERROR_cat_MEDIUM, BIG_DELTA_ERROR = DELTA_ERROR_cat_BIG) 

 

# RULE for OUTPUT_Kc 

rule1 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR']) 

rule2 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR']) 

rule3 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR']) 

rule4 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR']) 

rule5 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR']) 

rule6 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR']) 

rule7 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR']) 

rule8 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR']) 

rule9 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR']) 

 

# RULE for tau_I 

rule10 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR']) 

rule11 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR']) 
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rule12 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR']) 

rule13 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR']) 

rule14 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR']) 

rule15 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR']) 

rule16 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR']) 

rule17 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR']) 

rule18 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR']) 

 

# RULE for tau_D 

rule19 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR']) 

rule20 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR']) 

rule21 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR']) 

rule22 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR']) 

rule23 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR']) 

rule24 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR']) 

rule25 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR']) 

rule26 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR']) 

rule27 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR']) 

 

# IMPLICATION for Kc 

imp1 = np.fmax(rule1, S1) 
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imp2 = np.fmax(rule2, S1) 

imp3 = np.fmax(rule3, S1) 

imp4 = np.fmax(rule4, M1) 

imp5 = np.fmax(rule5, M1) 

imp6 = np.fmax(rule6, M1) 

imp7 = np.fmax(rule7, B1) 

imp8 = np.fmax(rule7, B1) 

imp9 = np.fmax(rule7, B1) 

 

# IMPLICATION for tauI 

imp10 = np.fmax(rule10, S2) 

imp11 = np.fmax(rule11, S2) 

imp12 = np.fmax(rule12, S2) 

imp13 = np.fmax(rule13, M2) 

imp14 = np.fmax(rule14, M2) 

imp15 = np.fmax(rule15, M2) 

imp16 = np.fmax(rule16, B2) 

imp17 = np.fmax(rule17, B2) 

imp18 = np.fmax(rule18, B2) 

 

# IMPLICATION for tauD 
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imp19 = np.fmax(rule19, S3) 

imp20 = np.fmax(rule20, S3) 

imp21 = np.fmax(rule21, S3) 

imp22 = np.fmax(rule22, M3) 

imp23 = np.fmax(rule23, M3) 

imp24 = np.fmax(rule24, M3) 

imp25 = np.fmax(rule25, B3) 

imp26 = np.fmax(rule26, B3) 

imp27 = np.fmax(rule27, B3) 

 

# Aggregate all output - min 

aggregate_membership1 = np.fmax(imp1, np.fmax(imp2, np.fmax(imp3, np.fmax(imp4, np.fmax(imp5, 

np.fmax(imp6, np.fmax(imp7, np.fmax(imp8,imp9)))))))) 

aggregate_membership2 = np.fmax(imp10, np.fmax(imp11, np.fmax(imp12, np.fmax(imp13, np.fmax(imp14, 

np.fmax(imp15, np.fmax(imp16, np.fmax(imp17,imp18)))))))) 

aggregate_membership3 = np.fmax(imp19, np.fmax(imp20, np.fmax(imp21, np.fmax(imp22, np.fmax(imp23, 

np.fmax(imp24, np.fmax(imp25, np.fmax(imp26,imp27)))))))) 

 

# Defuzzification 

result_Kc   = fuzz.defuzz(Kc, aggregate_membership1 , 'centroid') 

result_tauI = fuzz.defuzz(tauI, aggregate_membership2 , 'centroid') 

result_tauD = fuzz.defuzz(tauD, aggregate_membership3 , 'centroid') 

print (result_Kc) 
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print (result_tauI) 

print (result_tauD) 

 

 

From the PID gain tuning example using this fuzzy system, the results of Kc = 0.39331459212203296, τI = 
2.4983242909359484, and τD = 0.49331226163799125, as shown in Figure 5. 
 
 
 
 
 

 

 

 

 

 

 

 

 
 

Figure 5. PID gain tuning using Fuzzy 
 

The effect of the PID gain tuning results from the fuzzy system mechanism, then seen on the success of the 
control process. The results of the control process with the PID controller using the fuzzy tuning gain process are 
shown in Figure 6. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 6. PID gain tuning control results using Fuzzy 
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Examples of PID programming gain tuning based on artificial neural networks using the Python programming 
language are partially shown in the following program script. 

 
import numpy as np # For matrix math 

import matplotlib.pyplot as plt # For plotting 

import sys # For printing 

 

num_i_units = 2 # Number of Input units 

num_h_units = 3 # Number of Hidden units 

num_o_units = 3 # Number of Output units 

 

# The learning rate for Gradient Descent. 

learning_rate = 0.01 

# The parameter to help with overfitting. 

reg_param = 0 

# Maximum iterations for Gradient Descent. 

max_iter = 100 

# Number of training examples 

m = 4 

 

#Generating the Weights and Biases 

np.random.seed(1) 

W1 = np.random.normal(0, 1, (num_h_units, num_i_units)) # 3x2 

W2 = np.random.normal(0, 1, (num_o_units, num_h_units)) # 3x3 
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B1 = np.random.random((num_h_units, 1)) # 3x1 

B2 = np.random.random((num_o_units, 1)) # 3x1 

 

def train(_W1, _W2, _B1, _B2): # Neural Network Training 

    for i in range(max_iter): 

        c = 0 

        dW1 = 0 

        dW2 = 0 

        dB1 = 0 

        dB2 = 0 

         

        for j in range(m): 

            sys.stdout.write("\rIteration: {} and {}".format(i + 1, j + 1)) 

 

            # Forward Prop. 

            a0 = X[j].reshape(X[j].shape[0], 1) # 2x1 

 

            z1 = _W1.dot(a0) + _B1 # 3x2 * 2x1 + 3x1 = 3x1 

            a1 = sigmoid(z1) # 3x1 
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            z2 = _W2.dot(a1) + _B2 # 3x2 * 2x1 + 3x1 = 3x1 

            a2 = sigmoid(z2) # 3x1 

 

            # Back prop. 

            dz2 = a2 - y[j].reshape(y[j].shape[0], 1) # 3x1 

            dW2 += dz2 * a1.T # 3x1 .* 1x3 = 3x3 

 

            dz1 = np.multiply((_W2.T).dot(dz2), sigmoid(a1, derv=True)) # (3x3 * 3x1) .* 3x1 = 3x1 

            dW1 += dz1.dot(a0.T) # 3x1 * 1x2 = 3x2  

 

            dB1 += dz1 # 3x1 

            dB2 += dz2 # 3x1 

 

            c = c + (-(y[j].reshape(y[j].shape[0], 1) * np.log(a2)) - ((1 - y[j].reshape(y[j].shape[0], 1)) * np.log(1 - a2))) 

            sys.stdout.flush() # Updating the text. 

         

        _W1 = _W1 - learning_rate * (dW1 / m) + ( (reg_param / m) * _W1) 

        _W2 = _W2 - learning_rate * (dW2 / m) + ( (reg_param / m) * _W2) 

 

        _B1 = _B1 - learning_rate * (dB1 / m) 

        _B2 = _B2 - learning_rate * (dB2 / m) 
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    return (_W1, _W2, _B1, _B2) 

 

   # Testing 

    for j in range(1): 

            a0 = coba[j].reshape(coba[j].shape[0], 1) # 2x1 

            z1 = W1.dot(a0) + B1 # 3x2 * 2x1 + 3x1 = 3x1 

            a1 = sigmoid(z1) # 3x1 

            z2 = W2.dot(a1) + B2 # 3x2 * 2x1 + 3x1 = 3x1 

            outNN = sigmoid(z2) # 3x1 

 
 

From the PID gain tuning example using this artificial neural network, Kc = 0.43504464, τI = 0.99994792, and 
τD = 0.27455905, as shown in Figure 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. PID gain tuning using Artificial Neural Network 

 
PID gain tuning obtained from artificial neural network systems, then the effect is seen on the success of 

control. The results of the control process with PID controllers with the gain tuning process using the artificial neural 
network are shown in Figure 8.  
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Figure 8. PID gain tuning control results using Artificial Neural Network 
 

CONCLUSION 

From the experimental results it can be shown that the Python programming language can be used as an 

alternative to realize a simulation of Fuzzy and Artificial Neural Networks (ANN)-based intelligent control systems. 

Where most intelligent control systems currently use the Proportional Integral Derivative (PID) Controller, fuzzy and 

neural are mostly used for the tuning process rather than the PID gain. The simulation results show the effect of gain 

changes on the success of the control process. 
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