
International Seminar of Research Month

Science and Technology for People Empowerment
Volume 2018

How to cite this article: Rahmat B & Nugroho B. (2018) Fuzzy and Artificial Neural Networks-Based Intelligent Control Systems Using

Python. International Seminar of Research Month Science and Technology for People Empowerment. NST Proceedings. pages 152-

170.doi: 10.11594/nstp.2019.0221.

152

Conference Paper

Fuzzy and Artificial Neural Networks-Based Intelligent Control Systems Using Python

B. Rahmat, B. Nugroho

Informatics Engineering Department, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, East Java, Indonesia

Abstract

This research proposes intelligent system programming based on Fuzzy and Artificial Neural Networks
(ANN). Programming is built using the Python Programming Language. The control system is used
based on Proportional Integral Derivative (PID) Controller, where the gain tuning uses Fuzzy and
ANN. The research stages include the preparation of plant models, fuzzy and ANN programming
libraries using Python. And then how to show the performance of the Intelligent Control System that
was built in the form of a simulation.

Keywords: ANN, Control, Fuzzy, Intelligent, Python

INTRODUCTION

Now intelligent control systems play an important role in the industrial world. It is undeniable that two of the
intelligent system algorithms that are often used today are fuzzy systems and artificial neural networks. So that fuzzy-
based and neural network-based intelligent control systems are often the solution to current intelligent system control.
Meanwhile the Proportional Integral Derivative (PID) based control system remains the mainstay of the industry up
to now. In turn, so that the development of intelligent system technology can contribute to the development of
current control technology, PID controllers are combined with intelligent systems. In this case, especially fuzzy-based
and neural networks. The method that allows for the incorporation of PID with an artificial intelligence system, is
during the process of selecting the best gain from PID. In the term control this is called tuning or generally called
PID gain tuning.

In the current development, research on PID gain tuning based on fuzzy and neural networks has been done a
lot. But it is still interesting to develop. It is proven that until now there are still many studies on this matter. Some of
them can be mentioned as follows. PID gain tuning uses a fuzzy system as described in the following papers:
(Rodríguez-Castellanos, Grisales-Palacio, & Cote-Ballesteros, 2018), (El-samahy & Shamseldin, 2018), (Dettori,
Iannino, Colla, & Signorini, 2018), (Khan, Pasupuleti, & Jidin, 2018), (Asgharnia, Shahnazi, & Jamali, 2018),
(Gheisarnejad, 2018), (Verma, Manik, & Jain, 2018), (Huang et al., 2018), (Huang et al., 2018). PID gain tuning uses
artificial neural networks, among others, as described in the following papers: (Yu, 2018), (Anh, 2010), (Milovanović
et al., 2016), (Attaran, Yusof, & Selamat, 2016), (Fang, Zhuo, & Lee, 2010), (Chu & Teng, 1999).

Furthermore, to realize how fuzzy algorithms and neural networks can be implemented in hardware controls,
especially those using PID controllers, the Python programming language can be one of the best alternative choices.
At least from its open source nature and very complete and reliable library support. So this study proposes the use of
the Python programming language for the implementation of fuzzy and neural algorithms used for PID gain tuning.

 Corresponding author

Email address: basukirahmat.if@upnjatim.ac.id

 ISRMSTPE

153

METHODS

The intelligent control system designed is PID based. The PID controller in its work automatically adjusts the
control output based on the difference between the set point (SP) and the measured process variable (PV), as a
control error e(t). The controller output value u(t) is transferred as the system input. Each relationship is used as
shown in Equations (1) and (2).

 (1)

 (2)

The term ubias is a constant that is usually set to the value u(t) when the first controller switches from manual
mode to automatic mode. This gives a "bumpless" transfer if the error is zero when the controller is turned on. The
three tuning values for the PID controller are controller gain, Kc, integral time constant, τI, and derivative time
constant, τD. The value of Kc is a multiplier on proportional errors and the terms integral and higher values make
the controller more aggressive in response to errors from the set point. The integral time constant, τI, (also known as
integral reset time) must be positive and have a unit of time. Because τI is getting smaller, the term integral is bigger
because τI is in the denominator. The constant time derivative, τD also has a unit of time and must be positive. The
set point (SP) is the target value and the process variable (PV) is a measured value that may deviate from the desired
value. The error of the set point is the difference between SP and PV and is defined as e(t) = SP - PV.

Furthermore, for implementation purposes Discrete PID Controller is used. The digital controller is
implemented with a discrete sampling period and a separate form of the PID equation is needed to estimate the
integral of errors and derivatives. This modification replaces the continuous form of the integral with the sum of
errors and uses Δt as the time between sample sampling and nt as the number of samples taken. It also replaces
derivatives with derivative versions or other methods filtered to estimate instant slope (PV). Equation (2) if stated in
digital form as shown in Equation (3).

 (3)

From Equation (3) it can be seen 3 determinants of the success of the control process, namely Kc, τI and τD.

The search process or setting to obtain the best gain from Kc, τI and τD is called the gain tuning process. In this
study, the tuning process is proposed using fuzzy and artificial neural network. The PID gain tuning process uses
fuzzy and artificial neural networks that we propose as shown in Figure 1 and Figure 2.

Figure 1. PID gain tuning using Fuzzy

 ISRMSTPE

154

Figure 2. PID gain tuning using artificial neural network

The fuzzy system design for the PID gain tuning process as shown in Figure-1 requires at least a mechanism for

how to make gain adjustments from PID (Kc, τI and τD), based on reading errors e(t) and delta error Δe(t). A
reading of errors and delta error is used to decide whether or not to change the PID gain. If the error has converged
towards zero, then the existing gain is maintained. But if it is still far from converging towards zero, it is necessary to
change the gain following the rule that has been designed. The fuzzy system for this purpose is shown in Figure-3.
Fuzzy system rules for changing gain are shown in Table 1.

Figure 3. Fuzzy System Design

 ISRMSTPE

155

Table 1. Fuzzy Rule System

Rule
Input Output

error delta_error

1 SE SDE S1 S2 S3

2 SE MDE S1 S2 S3

3 SE BDE S1 S2 S3

4 ME SDE M1 M2 M3

5 ME MDE M1 M2 M3

6 ME BDE M1 M2 M3

7 BE SDE B1 B2 B3

8 BE MDE B1 B2 B3

9 BE BDE B1 B2 B3

The artificial neural network design for the PID gain tuning process, as shown in Figure-2, requires a

mechanism for making gain adjustments from PID (Kc, τI and τD), based on reading errors e(t) and delta error
Δe(t). A reading of errors and delta error is used to decide whether or not to change the PID gain. If the error has
converged towards zero, then the existing gain is maintained. But if it is still far from converging towards zero, it is
necessary to change the gain by generating artificial neural network weights. The artificial neural network architecture
for this purpose is shown in Figure 4.

Figure 4. Artificial neural network architecture for PID gain tuning

RESULT AND DISCUSSION

To realize how the Python implementation for the PID gain tuning process, Python simulation is first made for the

control system using PID, with a manual tuning process. If the manual tuning process has been successful, the task of

the fuzzy system and the artificial neural network is to imitate the tuning process and choose PID gain which has the

best control effect. Python programming for manually controlling simulation with PID controller, with a linear plant

model, is shown in the following program.

 ISRMSTPE

156

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint

import ipywidgets as wg

from IPython.display import display

n = 100 # time points to plot

tf = 50.0 # final time

SP_start = 2.0 # time of set point change

def process(y,t,u):

 Kp = 4.0

 taup = 3.0

 thetap = 1.0

 if t<(thetap+SP_start):

 dydt = 0.0 # time delay

 else:

 dydt = (1.0/taup) * (-y + Kp * u)

 return dydt

def pidPlot(Kc,tauI,tauD):

 t = np.linspace(0,tf,n) # create time vector

 P= np.zeros(n) # initialize proportional term

 I = np.zeros(n) # initialize integral term

 D = np.zeros(n) # initialize derivative term

 e = np.zeros(n) # initialize error

 OP = np.zeros(n) # initialize controller output

 PV = np.zeros(n) # initialize process variable

 SP = np.zeros(n) # initialize setpoint

 SP_step = int(SP_start/(tf/(n-1))+1) # setpoint start

 SP[0:SP_step] = 0.0 # define setpoint

 SP[SP_step:n] = 4.0 # step up

 y0 = 0.0 # initial condition

 # loop through all time steps

 for i in range(1,n):

 # simulate process for one time step

 ts = [t[i-1],t[i]] # time interval

 y = odeint(process,y0,ts,args=(OP[i-1],)) # compute next step

 y0 = y[1] # record new initial condition

 # calculate new OP with PID

 ISRMSTPE

157

 PV[i] = y[1] # record PV

 e[i] = SP[i] - PV[i] # calculate error = SP - PV

 dt = t[i] - t[i-1] # calculate time step

 P[i] = Kc * e[i] # calculate proportional term

 I[i] = I[i-1] + (Kc/tauI) * e[i] * dt # calculate integral term

 D[i] = -Kc * tauD * (PV[i]-PV[i-1])/dt # calculate derivative term

 OP[i] = P[i] + I[i] + D[i] # calculate new controller output

 # plot PID response

 plt.figure(1,figsize=(15,7))

 plt.subplot(2,2,1)

 plt.plot(t,SP,'k-',linewidth=2,label='Setpoint (SP)')

 plt.plot(t,PV,'r:',linewidth=2,label='Process Variable (PV)')

 plt.legend(loc='best')

 plt.subplot(2,2,2)

 plt.plot(t,P,'g.-',linewidth=2,label=r'Proportional = $K_c \; e(t)$')

 plt.plot(t,I,'b-',linewidth=2,label=r'Integral = $\frac{K_c}{\tau_I} \int_{i=0}^{n_t} e(t) \; dt $')

 plt.plot(t,D,'r--',linewidth=2,label=r'Derivative = $-K_c \tau_D \frac{d(PV)}{dt}$')

 plt.legend(loc='best')

 plt.subplot(2,2,3)

 plt.plot(t,e,'m--',linewidth=2,label='Error (e=SP-PV)')

 plt.legend(loc='best')

 plt.subplot(2,2,4)

 plt.plot(t,OP,'b--',linewidth=2,label='Controller Output (OP)')

 plt.legend(loc='best')

 plt.xlabel('time')

Kc_slide = wg.FloatSlider(value=0.1,min=-0.2,max=1.0,step=0.05)

tauI_slide = wg.FloatSlider(value=4.0,min=0.01,max=5.0,step=0.1)

tauD_slide = wg.FloatSlider(value=0.0,min=0.0,max=1.0,step=0.1)

wg.interact(pidPlot, Kc=Kc_slide, tauI=tauI_slide, tauD=tauD_slide)

The purpose of using fuzzy systems and artificial neural networks is how to do the PID gain tuning process,

which is to find the appropriate Kc, τI and τD values, so that the best control results are obtained. Good control

results are indicated by a significant decrease in error. An example of implementing fuzzy based PID gain tuning

programming using the Python programming language is partly shown in the following program script.

 ISRMSTPE

158

Import NumPy and scikit-fuzzy

import numpy as np

import skfuzzy as fuzz

Generate universe functions

ERROR = np.arange(0, 5, 0.01)

DELTA_ERROR = np.arange(0, 5, 0.01)

Kc = np.arange(-0.2, 1.0, 0.01)

tauI = np.arange(0.01, 5.0, 0.01)

tauD = np.arange(0.0, 1.0, 0.01)

Membership functions for ERROR

SE = fuzz.gaussmf(ERROR, 0.01, 0.8495)

ME = fuzz.gaussmf(ERROR, 2.5, 0.8495)

BE = fuzz.gaussmf(ERROR, 5, 0.8495)

Membership functions for DELTA_EROR

SDE = fuzz.gaussmf(DELTA_ERROR, 0.01, 0.8495)

MDE = fuzz.gaussmf(DELTA_ERROR, 2.5, 0.8495)

BDE = fuzz.gaussmf(DELTA_ERROR, 5, 0.8495)

 ISRMSTPE

159

Membership functions for OUTPUT_Kc, OUTPUT_tauI, OUTPUT_tauD

S1 = fuzz.gaussmf(Kc, -0.2, 0.2039)

M1 = fuzz.gaussmf(Kc, 0.4, 0.2039)

B1 = fuzz.gaussmf(Kc, 1, 0.2039)

S2 = fuzz.gaussmf(tauI, 0.01, 0.8476)

M2 = fuzz.gaussmf(tauI, 2.505, 0.8476)

B2 = fuzz.gaussmf(tauI, 5, 0.8476)

S3 = fuzz.gaussmf(tauD, 6.939e-18, 0.1699)

M3 = fuzz.gaussmf(tauD, 0.5, 0.1699)

B3 = fuzz.gaussmf(tauD, 1, 0.1699)

def ERROR_category(ERROR_in = 5):

 ERROR_cat_SMALL = fuzz.interp_membership(ERROR, SE, ERROR_in)

 ERROR_cat_MEDIUM = fuzz.interp_membership(ERROR, ME, ERROR_in)

 ERROR_cat_BIG = fuzz.interp_membership(ERROR, BE, ERROR_in)

 return dict(SMALL_ERROR = ERROR_cat_SMALL, MEDIUM_ERROR = ERROR_cat_MEDIUM,

BIG_ERROR = ERROR_cat_BIG)

 ISRMSTPE

160

def DELTA_ERROR_category(DELTA_ERROR_in = 5):

 DELTA_ERROR_cat_SMALL = fuzz.interp_membership(DELTA_ERROR, SDE, DELTA_ERROR_in)

 DELTA_ERROR_cat_MEDIUM = fuzz.interp_membership(DELTA_ERROR, MDE,

DELTA_ERROR_in)

 DELTA_ERROR_cat_BIG = fuzz.interp_membership(DELTA_ERROR, BDE, DELTA_ERROR_in)

 return dict(SMALL_DELTA_ERROR = DELTA_ERROR_cat_SMALL, MEDIUM_DELTA_ERROR =

DELTA_ERROR_cat_MEDIUM, BIG_DELTA_ERROR = DELTA_ERROR_cat_BIG)

RULE for OUTPUT_Kc

rule1 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR'])

rule2 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR'])

rule3 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR'])

rule4 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR'])

rule5 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR'])

rule6 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR'])

rule7 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR'])

rule8 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR'])

rule9 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR'])

RULE for tau_I

rule10 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR'])

rule11 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR'])

 ISRMSTPE

161

rule12 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR'])

rule13 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR'])

rule14 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR'])

rule15 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR'])

rule16 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR'])

rule17 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR'])

rule18 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR'])

RULE for tau_D

rule19 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR'])

rule20 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR'])

rule21 = np.fmax(ERROR_in['SMALL_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR'])

rule22 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR'])

rule23 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR'])

rule24 = np.fmax(ERROR_in['MEDIUM_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR'])

rule25 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['SMALL_DELTA_ERROR'])

rule26 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['MEDIUM_DELTA_ERROR'])

rule27 = np.fmax(ERROR_in['BIG_ERROR'], DELTA_ERROR_in['BIG_DELTA_ERROR'])

IMPLICATION for Kc

imp1 = np.fmax(rule1, S1)

 ISRMSTPE

162

imp2 = np.fmax(rule2, S1)

imp3 = np.fmax(rule3, S1)

imp4 = np.fmax(rule4, M1)

imp5 = np.fmax(rule5, M1)

imp6 = np.fmax(rule6, M1)

imp7 = np.fmax(rule7, B1)

imp8 = np.fmax(rule7, B1)

imp9 = np.fmax(rule7, B1)

IMPLICATION for tauI

imp10 = np.fmax(rule10, S2)

imp11 = np.fmax(rule11, S2)

imp12 = np.fmax(rule12, S2)

imp13 = np.fmax(rule13, M2)

imp14 = np.fmax(rule14, M2)

imp15 = np.fmax(rule15, M2)

imp16 = np.fmax(rule16, B2)

imp17 = np.fmax(rule17, B2)

imp18 = np.fmax(rule18, B2)

IMPLICATION for tauD

 ISRMSTPE

163

imp19 = np.fmax(rule19, S3)

imp20 = np.fmax(rule20, S3)

imp21 = np.fmax(rule21, S3)

imp22 = np.fmax(rule22, M3)

imp23 = np.fmax(rule23, M3)

imp24 = np.fmax(rule24, M3)

imp25 = np.fmax(rule25, B3)

imp26 = np.fmax(rule26, B3)

imp27 = np.fmax(rule27, B3)

Aggregate all output - min

aggregate_membership1 = np.fmax(imp1, np.fmax(imp2, np.fmax(imp3, np.fmax(imp4, np.fmax(imp5,

np.fmax(imp6, np.fmax(imp7, np.fmax(imp8,imp9))))))))

aggregate_membership2 = np.fmax(imp10, np.fmax(imp11, np.fmax(imp12, np.fmax(imp13, np.fmax(imp14,

np.fmax(imp15, np.fmax(imp16, np.fmax(imp17,imp18))))))))

aggregate_membership3 = np.fmax(imp19, np.fmax(imp20, np.fmax(imp21, np.fmax(imp22, np.fmax(imp23,

np.fmax(imp24, np.fmax(imp25, np.fmax(imp26,imp27))))))))

Defuzzification

result_Kc = fuzz.defuzz(Kc, aggregate_membership1 , 'centroid')

result_tauI = fuzz.defuzz(tauI, aggregate_membership2 , 'centroid')

result_tauD = fuzz.defuzz(tauD, aggregate_membership3 , 'centroid')

print (result_Kc)

 ISRMSTPE

164

print (result_tauI)

print (result_tauD)

From the PID gain tuning example using this fuzzy system, the results of Kc = 0.39331459212203296, τI =
2.4983242909359484, and τD = 0.49331226163799125, as shown in Figure 5.

Figure 5. PID gain tuning using Fuzzy

The effect of the PID gain tuning results from the fuzzy system mechanism, then seen on the success of the
control process. The results of the control process with the PID controller using the fuzzy tuning gain process are
shown in Figure 6.

Figure 6. PID gain tuning control results using Fuzzy

 ISRMSTPE

165

Examples of PID programming gain tuning based on artificial neural networks using the Python programming
language are partially shown in the following program script.

import numpy as np # For matrix math

import matplotlib.pyplot as plt # For plotting

import sys # For printing

num_i_units = 2 # Number of Input units

num_h_units = 3 # Number of Hidden units

num_o_units = 3 # Number of Output units

The learning rate for Gradient Descent.

learning_rate = 0.01

The parameter to help with overfitting.

reg_param = 0

Maximum iterations for Gradient Descent.

max_iter = 100

Number of training examples

m = 4

#Generating the Weights and Biases

np.random.seed(1)

W1 = np.random.normal(0, 1, (num_h_units, num_i_units)) # 3x2

W2 = np.random.normal(0, 1, (num_o_units, num_h_units)) # 3x3

 ISRMSTPE

166

B1 = np.random.random((num_h_units, 1)) # 3x1

B2 = np.random.random((num_o_units, 1)) # 3x1

def train(_W1, _W2, _B1, _B2): # Neural Network Training

 for i in range(max_iter):

 c = 0

 dW1 = 0

 dW2 = 0

 dB1 = 0

 dB2 = 0

 for j in range(m):

 sys.stdout.write("\rIteration: {} and {}".format(i + 1, j + 1))

 # Forward Prop.

 a0 = X[j].reshape(X[j].shape[0], 1) # 2x1

 z1 = _W1.dot(a0) + _B1 # 3x2 * 2x1 + 3x1 = 3x1

 a1 = sigmoid(z1) # 3x1

 ISRMSTPE

167

 z2 = _W2.dot(a1) + _B2 # 3x2 * 2x1 + 3x1 = 3x1

 a2 = sigmoid(z2) # 3x1

 # Back prop.

 dz2 = a2 - y[j].reshape(y[j].shape[0], 1) # 3x1

 dW2 += dz2 * a1.T # 3x1 .* 1x3 = 3x3

 dz1 = np.multiply((_W2.T).dot(dz2), sigmoid(a1, derv=True)) # (3x3 * 3x1) .* 3x1 = 3x1

 dW1 += dz1.dot(a0.T) # 3x1 * 1x2 = 3x2

 dB1 += dz1 # 3x1

 dB2 += dz2 # 3x1

 c = c + (-(y[j].reshape(y[j].shape[0], 1) * np.log(a2)) - ((1 - y[j].reshape(y[j].shape[0], 1)) * np.log(1 - a2)))

 sys.stdout.flush() # Updating the text.

 _W1 = _W1 - learning_rate * (dW1 / m) + ((reg_param / m) * _W1)

 _W2 = _W2 - learning_rate * (dW2 / m) + ((reg_param / m) * _W2)

 _B1 = _B1 - learning_rate * (dB1 / m)

 _B2 = _B2 - learning_rate * (dB2 / m)

 ISRMSTPE

168

 return (_W1, _W2, _B1, _B2)

 # Testing

 for j in range(1):

 a0 = coba[j].reshape(coba[j].shape[0], 1) # 2x1

 z1 = W1.dot(a0) + B1 # 3x2 * 2x1 + 3x1 = 3x1

 a1 = sigmoid(z1) # 3x1

 z2 = W2.dot(a1) + B2 # 3x2 * 2x1 + 3x1 = 3x1

 outNN = sigmoid(z2) # 3x1

From the PID gain tuning example using this artificial neural network, Kc = 0.43504464, τI = 0.99994792, and
τD = 0.27455905, as shown in Figure 7.

Figure 7. PID gain tuning using Artificial Neural Network

PID gain tuning obtained from artificial neural network systems, then the effect is seen on the success of

control. The results of the control process with PID controllers with the gain tuning process using the artificial neural
network are shown in Figure 8.

 ISRMSTPE

169

Figure 8. PID gain tuning control results using Artificial Neural Network

CONCLUSION

From the experimental results it can be shown that the Python programming language can be used as an

alternative to realize a simulation of Fuzzy and Artificial Neural Networks (ANN)-based intelligent control systems.

Where most intelligent control systems currently use the Proportional Integral Derivative (PID) Controller, fuzzy and

neural are mostly used for the tuning process rather than the PID gain. The simulation results show the effect of gain

changes on the success of the control process.

REFERENCES
Anh, H.P.H. (2010). Online tuning gain scheduling MIMO neural PID control of the 2-axes pneumatic artificial muscle (PAM) robot

arm. Expert Systems with Applications, 37(9), 6547–6560.

Asgharnia, A., Shahnazi, R., and Jamali, A. (2018). Performance and robustness of optimal fractional fuzzy PID controllers for pitch

control of a wind turbine using chaotic optimization algorithms. ISA Transactions, 79, 27–44.

Attaran, S. M., Yusof, R., and Selamat, H. (2016). A novel optimization algorithm based on epsilon constraint-RBF neural network for

tuning PID controller in decoupled HVAC system. Applied Thermal Engineering, 99, 613–624.

Chu, S.-Y., and Teng, C.-C. (1999). Tuning of PID controllers based on gain and phase margin specifications using fuzzy neural network.

Fuzzy Sets and Systems, 101(1), 21–30.

Dettori, S., Iannino, V., Colla, V., and Signorini, A. (2018). An adaptive Fuzzy logic-based approach to PID control of steam turbines in

solar applications. Applied Energy, 227, 655–664.

El-samahy, A. A., and Shamseldin, M. A. (2018). Brushless DC motor tracking control using self-tuning fuzzy PID control and model

reference adaptive control. Ain Shams Engineering Journal, 9(3), 341–352.

Fang, M.-C., Zhuo, Y.-Z., and Lee, Z.-Y. (2010). The application of the self-tuning neural network PID controller on the ship roll

reduction in random waves. Ocean Engineering, 37(7), 529–538.

Gheisarnejad, M. (2018). An effective hybrid harmony search and cuckoo optimization algorithm based fuzzy PID controller for load

frequency control. Applied Soft Computing, 65, 121–138.

Huang, H., Zhang, S., Yang, Z., Tian, Y., Zhao, X., Yuan, Z., … Wei, Y. (2018). Modified Smith fuzzy PID temperature control in an oil-

replenishing device for deep-sea hydraulic system. Ocean Engineering, 149, 14–22.

 ISRMSTPE

170

Khan, M. R. B., Pasupuleti, J., and Jidin, R. (2018). Load frequency control for mini-hydropower system: A new approach based on self-

tuning fuzzy proportional-derivative scheme. Sustainable Energy Technologies and Assessments, 30, 253–262.

Milovanović, M. B., Antić, D. S., Milojković, M. T., Nikolić, S. S., Perić, S. L., and Spasić, M. D. (2016). Adaptive PID con trol based on

orthogonal endocrine neural networks. Neural Networks, 84, 80–90.

Rodríguez-Castellanos, J. E., Grisales-Palacio, V. H., and Cote-Ballesteros, J. E. (2018). A tuning proposal for direct fuzzy PID controllers

oriented to industrial continuous processes. IFAC-PapersOnLine, 51(4), 657–662.

Verma, O. P., Manik, G., and Jain, V. K. (2018). Simulation and control of a complex nonlinear dynamic behavior of multi-stage

evaporator using PID and Fuzzy-PID controllers. Journal of Computational Science, 25, 238–251.

Yu, W. (2018). PID Control with Intelligent Compensation for Exoskeleton Robots. Cambridge: Academic Press.

