Boosting Product Sales through a Business Intelligence Approach
DOI:
https://doi.org/10.11594/nstp.2025.4784Keywords:
Business intelligence, sales, data analysis, marketing strategy, decision-makingAbstract
In today’s data-driven business environment, companies need to leverage advanced analytical tools to stay competitive and drive growth. This study analyzes how a Business Intelligence (BI) approach can be utilized to boost product sales through the implementation of a recommendation system based on purchase data. Business Intelligence encompasses a set of technologies and analytical processes used to collect, store, and analyze business data to support better decision-making. In this context, BI is applied to identify sales trends, understand customer behavior, and optimize marketing strategies. The research process involves collecting data from various sources, including historical sales data and customer demographics, which are analyzed using BI tools to uncover relevant patterns and insights. The methodology used in this study involves developing a recommendation system that suggests products to customers based on the most frequently purchased items. Analysis results indicate a 5% increase in sales following the implementation of the recommendation system, demonstrating the effectiveness of BI in driving sales growth. Therefore, adopting Business Intelligence through a product recommendation system represents a strategic step toward enhancing revenue and achieving business success in the rapidly evolving data era.
Downloads
References
Afkar, M. A., & Fathurrahmad. (2023). Transformasi bisnis dengan penerapan kecerdasan buatan (AI) pada sistem informasi dan teknologi digital: Tren Utama Tahun 2023. Journal Digital Technology Trend, 2(1), 1–12. https://doi.org/10.56347/jdtt.v2i1.146
Anisah, A., Sari, P. N., Fauzi, A., Geraldo, G., Wicaksono, R., Assyifa, S. N., & Zain Wahyu Ramadhan. (2024). Penerapan Bisnis Intelijen Dalam Penyempurnaan Sistem Pada Perusahaan Ojek Online (Grab) Dengan Memanfaatkan Kelemahan Kompetitor. Jurnal Riset Manajemen, 2(2), 263–277. https://doi.org/10.54066/jurma.v2i2.1951
Cahyati, I., Fauzi, A., Hasanuddin, H., Zuhri, I., Hibatullah, H., Dwi, N., Handayani, N., & Felisyana, R. (2024). Penerapan Business Intelligence Dengan Artificial Intelligence Pada E-Commerce. SENTRI: Jurnal Riset Ilmiah, 3(6), 2741–2756. https://doi.org/10.55681/sentri.v3i6.2904
Fauzi, A., Nugroho, A. A., Monte, A. K., Ignesia, A. A., Makruf, M. N., Andreas, R., & Hasanah, S. R. N. (2023). Pemanfaatan business intelligence dalam pembuatan strategi dan pengambilan keputusan bisnis. Jurnal Manajemen Dan Bisnis, 2(3), 212–218.
Hariri, F. R., & Rochim, L. W. (2022). Sistem rekomendasi produk aplikasi marketplace berdasarkan karakteristik pembeli menggunakan metode user based collaborative filtering. Teknika, 11(3), 208–217. https://doi.org/10.34148/teknika.v11i3.538
Mangunsong, A. R., Sihombing, V., & Munthe, I. R. (2024). Pengembangan sistem rekomendasi produk berdasarkan pola pembelian dengan pendekatan algoritma apriori. Jurnal Ilmu Komputer Dan Sistem Informasi (JIKOMSI), 7(1), 82–86. https://doi.org/10.55338/jikomsi.v7i1.2718
Mardiana, R., Fahdillah, Y., Kadar, M., Hassandi, I., & Mandasari, R. (2024). Implementasi transformasi digital dan kecerdasan buatan sebagai inovasi untuk UMKM pada era revolusi industri 4.0. Jurnal Ilmiah Manajemen Dan Kewirausahaan (JUMANAGE), 3(1), 266–273. https://doi.org/10.33998/jumanage.2024.3.1.1552
Ramadhana, R. Z., & Nasution, M. I. P. (2024). Analisis dampak penerapan teknologi AI pada pengambilan keputusan strategis dalam sistem informasi manajemen. Jurnal Ilmiah Research and Development Student, 2(1), 161–168. https://doi.org/10.59024/jis.v2i1.579
Downloads
Published
Conference Proceedings Volume
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this proceedings agree to the following terms:
Authors retain copyright and grant the Nusantara Science and Technology Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this proceeding.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the proceedings published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this proceeding.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See the Effect of Open Access).