Modelling of Return of S&P 500 Using the Non Linear Generalized Autoregressive Conditional Heteroscedasticity (NGARCH) Model
DOI:
https://doi.org/10.11594/nstp.2024.4110Keywords:
Modelling, S&P 500, NGARCHAbstract
ARIMA Box-Jenkins is one of the most popular forecasting methods. ARIMA modeling requires a non-heteroskedastic care that shows constant residual variants. Awake, meaning residual residue from heteroscedastic ARIMA modeling (not constant). To overcome the problem of residual heteroskedasticity ARIMA used modeling volatility that is Generalized Autoregressive Conditional Heteroscedasticity (GARCH). GARCH is used to model the ARIMA residual variant which means symmetric. Some financial data has an asymmetric nature caused by the influence of good news and bad news. To accommodate these asymmetric properties, we use the Non-Linear Generalized Autoregressive Conditional Heteroscedasticity (NGARCH) volatility model which is the development of the GARCH model. This research applies NGARCH model using S & P 500 share price index data from January 1, 2019, until July 31, 2023 during active day (Monday-Friday). The purpose of this study, to find the best model NGARCH. The best model generated for S & P 500 stock price index data is ARIMA (1,0,1) NGARCH (1,1) because it has small AIC.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Trimono Trimono, Aviolla Terza Damaliana, Irma Amanda Putri

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this proceedings agree to the following terms:
Authors retain copyright and grant the Nusantara Science and Technology Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this proceeding.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the proceedings published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this proceeding.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See the Effect of Open Access).