Optimization Production Magnesium Phosphate Formation with the Addition of Sodium Phosphate

Authors

  • Dodik Hendra Saputra Faculty of Engineering and Science, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya 60294, Indonesia
  • Evlyansa Bunga Rizka Ananda Faculty of Engineering and Science, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya 60294, Indonesia
  • Reva Edra Nugraha Faculty of Engineering and Science, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya 60294, Indonesia
  • Nur Aini Fauziah Faculty of Engineering and Science, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya 60294, Indonesia
  • Dyah Suci Perwitasari Faculty of Engineering and Science, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya 60294, Indonesia

DOI:

https://doi.org/10.11594/nstp.2025.4760

Keywords:

Magnesium phosphate, Sodium phosphate, optimization

Abstract

This study was conducted to optimize the effect of sodium phosphate (Na?PO?) concentration and solution pH on the formation of magnesium phosphate (Mg?(PO?)?) precipitates using the Response Surface Methodology (RSM) approach. This method is used to analyze the relationship between the two variables and determine the optimal conditions that produce maximum precipitation. In this precipitation process, magnesium ions (Mg²?) and phosphate ions (PO?³-) react in solution to form insoluble magnesium phosphate compounds. The analysis results show that the pH of the solution and the concentration of Na?PO? have a significant influence on the efficiency of precipitate formation. Based on the RSM approach, the optimum conditions for magnesium phosphate precipitation were obtained, namely at a Na?PO? concentration of 15% and a solution pH of 9. Under these conditions, the maximum amount of precipitate formation occurred, indicating that this combination of parameters plays an important role in the stability of the precipitation process. This finding has significant implications in the field of environmental engineering, particularly in wastewater treatment systems containing magnesium and phosphate ions. By understanding the optimum parameters in the precipitation process, the design of wastewater treatment systems can be improved to increase their efficiency and effectiveness in reducing contaminants. In addition, this data can be used as a reference in the development of simulation software that supports design optimization of sewage treatment equipment. This study also provides.

Downloads

Download data is not yet available.

References

Anami, W. R., Maslahat, M., & Arrisujaya, D. (2020). Presipitasi logam berat limbah cair laboratorium menggunakan natrium sulfida dari belerang alam. Jurnal Sains Natural, 10(2), 61. https://doi.org/10.31938/jsn.v10i2.283

Dewangga, B. S., Setyanugraha, M. A., & Edahwati, L. (2022). Uji karakteristik magnesium fosfat dari pelarutan mineral dolomit dengan asam fosfat. Journal of Chemical Process Engineering, 7(1), 2655–2967.

Su, C-C., Dulfo, L. D., Dalida, M. L. P., & Lu, M-C. (2014). Magnesium phosphate crystallization in a fluidized-bed reactor: Effects of pH, Mg:P molar ratio and seed. Separation and Purification Technology, 125(7), 90–96. https://doi.org/10.1016/j.seppur.2014.01.019

Fahim, I., Kheireddine, A., & Belaaouad, S. (2013). Sodium tripolyphosphate (STPP) as a novel corrosion inhibitor for mild steel in 1 M HCl. Journal of Optoelectronics and Advanced Materials, 15(5–6), 451–456.

Fariadi, A. F. D., Pinakesti, A., & Utami, I. (2022). Pengendalian laju korosi logam paduan menggunakan inhibitor phosphate dalam medium korosif. ChemPro, 3(1), 65–68. https://doi.org/10.33005/chempro.v3i1.163

Fatoni, R., & Fatimah, S. (2017). Pengembangan ekonomi kreatif melalui pembuatan sabun cair ; sebuah upaya pemberdayaan anggota aisyiah di wilayah Solo Raya. The 6th University Research Colloquuium 2017, 149–152. http://journal.ummgl.ac.id/index.php/urecol/article/download/1327/695/

Prassanti, R., & Alwi, G. (2018). Recovery natrium fosfat dari hasil samping pengolahan monasit secara basa dengan metode kristalisasi. Jurnal Teknik Kimia, 61–65.

Radja, B. H., Firdani, A., & Billah, M. (2021). Kinetika reaksi pembuatan magnesium hidroksid dari bittern. ChemPro, 2(01), 23–28. https://doi.org/10.33005/chempro.v2i01.73

Royani, A., Sulistiyono, E., Prasetiyo, A. B., & Subagja, R. (2018). Extraction of magnesium from calcined dolomite ore using hydrochloric acid leaching. AIP Conference Proceedings, 1964. https://doi.org/10.1063/1.5038299

Downloads

Published

15-05-2025

Conference Proceedings Volume

Section

Articles

How to Cite

Saputra, D. H. ., Ananda, E. B. R. ., Nugraha, R. E. ., Fauziah, N. A. ., & Perwitasari, D. S. . (2025). Optimization Production Magnesium Phosphate Formation with the Addition of Sodium Phosphate. Nusantara Science and Technology Proceedings, 2024(47), 400-406. https://doi.org/10.11594/nstp.2025.4760

Share

Similar Articles

1-10 of 75

You may also start an advanced similarity search for this article.