Quantitative Analysis of Eugenol Content in Clove Oil (Eugenia caryophyllus) Extracted from Flower, Stem, and Leaf using GC-MS Instrument

Authors

  • Ramadhani Mahendra Kusuma Agrotechnology, Agriculture Faculty, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya 60294, Indonesia
  • Saefurrohman Agrotechnology, Agriculture Faculty, Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Sri Wiyatiningsih Agrotechnology, Agriculture Faculty, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya 60294, Indonesia

DOI:

https://doi.org/10.11594/nstp.2025.4906

Keywords:

Bio-pesticide, caryophyllic acid, essential oil, phenylpropene, plant eugenol

Abstract

The quantification of eugenol in clove oil (Eugenia caryophyllus Linn.) is crucial due to its extensive application in the agricultural industries as a bio-based pesticide, given its efficacy in controlling insect pests, nematodes, pathogenic fungi, and bacteria. The antimicrobial mechanisms of eugenol include disrupting cell membrane function, inactivating enzymes, inhibiting chitin synthesis, nucleic acid and protein synthesis, and blocking ATP (adenosine triphosphate) production. Despite its importance, there is a lack of comprehensive studies comparing eugenol content across different parts of the clove plant. This study aims to fill this gap by conducting a quantitative analysis of eugenol content in clove oil extracted from the flower, stem, and leaf of the plant. The objective is to determine the variation in eugenol concentration among these plant parts using Gas Chromatography-Mass Spectrometry (GC-MS). The methodology involved the extraction of clove oil from the flower, stem, and leaf, followed by analysis with the Agilent 7890B GC-MS instrument. The results revealed average eugenol concentrations of 97.24% in the flower, 93.42% in the stem, and 79.74% in the leaf. These findings suggest that the flower contains the highest concentration of eugenol, which has significant implications for optimizing the extraction process in commercial applications. The study contributes to the understanding of the distribution of eugenol within clove plants and provides a basis for selecting the most potent plant parts for industrial extraction.

Downloads

Download data is not yet available.

References

Abdul Aziz, A. H., Rizkiyah, D. N., Qomariyah, L., Irianto, I., Che Yunus, M. A., & Putra, N. R. (2023). Unlocking the full potential of clove (Syzygium aromaticum) spice: An overview of extraction techniques, bioactivity, and future opportunities in the food and beverage industry. Processes, 11(8), 2453. DOI: https://doi.org/10.3390/pr11082453

Abenaim, L., Mandoli, A., Venturi, F., Bedini, S., & Conti, B. (2022). Evaluation of a quasi?dimeric eugenol derivative as repellent against the stored grain insect pest Sitophilus oryzae (Coleoptera Curculionidae). Pest Management Science, 78(6), 2588-2595. DOI: https://doi.org/10.1002/ps.6890

Alfikri, F. N., Pujiarti, R., Wibisono, M. G., & Hardiyanto, E. B. (2020). Yield, quality, and antioxidant activity of clove (Syzygium aromaticum L.) bud oil at the different phenological stages in young and mature trees. Scientifica, 2020(1), 9701701. DOI: https://doi.org/10.1155/2020/9701701

Ben Hassine, D., Kammoun El Euch, S., Rahmani, R., Ghazouani, N., Kane, R., Abderrabba, M., & Bouajila, J. (2021). Clove buds essential oil: The impact of grinding on the chemical composition and its biological activities involved in consumer’s health security. BioMed Research International, 2021(1), 9940591. DOI: https://doi.org/10.1155/2021/9940591

Ben Miri, Y., Nouasri, A., Herrera, M., Djenane, D., & Ariño, A. (2023). Antifungal activity of menthol, eugenol and their combination against Aspergillus ochraceus and Aspergillus niger in vitro and in stored cereals. Foods, 12(11), 2108. DOI: https://doi.org/10.3390/foods12112108

Boyko, O., & Brygadyrenko, V. (2023). Survival of Nematode Larvae after Treatment with Eugenol, Isoeugenol, Thymol, and Carvacrol. Frontiers in Bioscience-Elite, 15(4), 25. https://doi.org/10.31083/j.fbe1504025

Cui, W., Du, K. Y., Ling, Y. X., & Yang, C. J. (2021). Activity of eugenol derivatives against Fusarium graminearum Q1 strain and screening of isoeugenol mixtures. Journal of Plant Pathology, 103(3), 915-921. DOI: https://doi.org/10.1007/s42161-021-00875-5

Dini, I., Seccia, S., Senatore, A., Coppola, D., & Morelli, E. (2020). Development and validation of an analytical method for total polyphenols quantification in extra virgin olive oils. Food Analytical Methods, 13(2), 457-464. DOI: https://doi.org/10.1007/s12161-019-01657-7

Do, T. K. T., Hadji-Minaglou, F., Antoniotti, S., & Fernandez, X. (2015). Authenticity of essential oils. TrAC Trends in Analytical Chemistry, 66, 146-157. DOI: https://doi.org/10.1016/j.trac.2014.10.007

dos Santos, M. S., Oro, C. E., Dolianitis, B. M., Wancura, J. H., Tres, M. V., & Zabot, G. L. (2022). Control of Phytopathogens in Agriculture by Essential Oils. In Essential Oils: Applications and Trends in Food Science and Technology (pp. 221-245). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-99476-1_10

El Ghallab, Y., Al Jahid, A., Jamal Eddine, J., Ait Haj Said, A., Zarayby, L., & Derfoufi, S. (2020). Syzygium aromaticum L.: phytochemical investigation and comparison of the scavenging activity of essential oil, extracts and eugenol. Advances in Traditional Medicine, 20, 153-158. DOI: https://doi.org/10.1007/s13596-019-00416-7

Ertürk, S. (2021). Combined and individual effects of diatomaceous earth and methyl eugenol against stored products insect pests. Turkish Journal of Entomology, 45(2), 173-184. DOI: https://doi.org/10.16970/entoted.843178

Fernandes, M. J. G., Pereira, R. B., Pereira, D. M., Fortes, A. G., Castanheira, E. M., & Gonçalves, M. S. T. (2020). New eugenol derivatives with enhanced insecticidal activity. International Journal of Molecular Sciences, 21(23), 9257. https://doi.org/10.3390/ijms21239257

Hariyadi, M. A., Yahya, S., & Wachjar, A. (2020). Agro-morphologies and physicochemical properties of flower bud, stem and leaf oils in two clove varieties (Syzygium aromaticum L. Merr. and Perry.) originated from Ambon island. Chiang Mai University Journal of Natural Sciences, 19(3), 516-530. DOI: https://doi.org/10.12982/CMUJNS.2020.0034

Letchamo, W., Xu, H. L., & Gosselin, A. (1995). Variations in photosynthesis and essential oil in thyme. Journal of plant physiology, 147(1), 29-37. DOI: https://doi.org/10.1016/S0176-1617(11)81408-2

Mahulette, A. S., Yahya, S., & Wachjar, A. (2020). Physico-chemical properties of clove oil from three forest clove accession groups in Maluku. In IOP Conference Series: Earth and Environmental Science (Vol. 418, No. 1, p. 012028). IOP Publishing. DOI: https://doi.org/10.1088/1755-1315/418/1/012028

Matos, L. F., da Cruz Lima, E., de Andrade Dutra, K., Navarro, D. M. D. A. F., Alves, J. L. R., & Silva, G. N. (2020). Chemical composition and insecticidal effect of essential oils from Illicium verum and Eugenia caryophyllus on Callosobruchus maculatus in cowpea. Industrial Crops and Products, 145, 112088. DOI: https://doi.org/10.1016/j.indcrop.2020.112088

Maximino, S. C., Dutra, J. A., Rodrigues, R. P., Gonçalves, R. C., Morais, P. A., Ventura, J. A., & S Borges, W. (2020). Synthesis of Eugenol Derivatives and Evaluation of their Antifungal Activity Against Fusarium solani f. sp. piperis. Current Pharmaceutical Design, 26(14), 1532-1542. DOI: https://doi.org/10.2174/1381612826666200403120448

Mili?evi?, Z., Krnjaji?, S., Stevi?, M., ?irkovi?, J., Jeluši?, A., Pucarevi?, M., & Popovi?, T. (2022). Encapsulated clove bud essential oil: A new perspective as an eco-friendly biopesticide. Agriculture, 12(3), 338. DOI: https://doi.org/10.3390/agriculture12030338

Mujoko, T., Mahendra, R., Ramadhini, N., Suryaminarsih, P., & Agadhia, R. L. (2022). Efficacy of biopesticide formula containing Streptomyces sp. and Trichoderma sp. against Southern Green Stink Bug (Nezara viridula) on Soybean (Glycine max L.). Asian Research Journal of Agriculture, 15(4), 218-226. DOI: https://doi.org/10.9734/arja/2022/v15i4372

Nasiou, E., & Giannakou, I. O. (2020). The potential of eugenol as a nematicidal agent against (Treub) Chitwood. Journal of Nematology, 52(1), 1-10. DOI: https://doi.org/10.21307/jofnem-2020-103

Nisar, M. F., Khadim, M., Rafiq, M., Chen, J., Yang, Y., & Wan, C. C. (2021). Pharmacological properties and health benefits of eugenol: A comprehensive review. Oxidative medicine and cellular longevity, 2021(1), 2497354. https://doi.org/10.1155/2021/2497354

Noveriza, R., & Manohara, D. (2023, May). Effectiveness of Eucalyptus Nano Formulation against Phytophthora capsici the causal of foot rot disease on black pepper. In IOP Conference Series: Earth and Environmental Science (Vol. 1172, No. 1, p. 012027). IOP Publishing. DOI: https://doi.org/10.1088/1755-1315/1172/1/012027

Nurmansyah, N., Idris, H., Agustien, A., Mansyurdin, M., & Riska, R. (2024). Antifungal effectiveness of some essential oils and their mixtures against Fusarium oxysporum f. sp cubense that causes fusarium wilt disease of banana plants. In BIO Web of Conferences (Vol. 99, p. 04002). EDP Sciences. DOI: https://doi.org/10.1051/bioconf/20249904002

Oluoch, G., Nyongesa, M., Mamati, E. G., & Matiru, V. (2022). Thymol and eugenol nanoparticles elicit expression of Ralstonia solanacearum virulence and potato defense genes and are potential bactericides against potato bacterial wilt. Archives of Phytopathology and Plant Protection, 55(9), 1136-1157. DOI: https://doi.org/10.4236/aim.2021.1112052

Pati, S., Tufariello, M., Crupi, P., Coletta, A., Grieco, F., & Losito, I. (2021). Quantification of volatile compounds in wines by HS-SPME-GC/MS: Critical issues and use of multivariate statistics in method optimization. Processes, 9(4), 662. DOI: https://doi.org/10.3390/pr9040662

Robustelli della Cuna, F. S., Calevo, J., Bazzicalupo, M., Sottani, C., Grignani, E., & Preda, S. (2021). Chemical composition of essential oil from flowers of five fragrant Dendrobium (Orchidaceae). Plants, 10(8), 1718. DOI: https://doi.org/10.3390/plants10081718

Sagala, Y. N. I., & Kusuma, R. M. (2023). Mass Propagation of Antagonistic Bacteria Pseudomonas fluorescens as an Environmental-Friendly Biocontrol Agent. Nusantara Science and Technology Proceedings, 64-73. DOI: https://doi.org/10.11594/nstp.2023.3211

Saran, P. L., Damor, H. I., Lal, M., Sarkar, R., Kalariya, K. A., & Suthar, M. K. (2023). Identification of suitable chemotype of Ocimum gratissimum L. for cost effective eugenol production. Industrial Crops and Products, 191, 115890. DOI: https://doi.org/10.1016/j.indcrop.2022.115890

Sharma, A. K., Sharma, D., & Chopra, A. K. (2020). An overview of pesticides in the development of agriculture crops. Journal of Applied and Natural Science, 12(2), 101-109. DOI: https://doi.org/10.31018/jans.vi.2254

Silva-Beltran, N. P., Boon, S. A., Ijaz, M. K., McKinney, J., & Gerba, C. P. (2023). Antifungal activity and mechanism of action of natural product derivates as potential environmental disinfectants. Journal of Industrial Microbiology and Biotechnology, 50(1), kuad036. DOI: https://doi.org/10.1093/jimb/kuad036

Sousa, P. A., Neto, J., Bastos, M. M., & Aguiar, A. A. (2022). Eugenol and Pulegone as potential biorational alternatives for Trioza erytreae (Hemiptera: Triozidae) control: Preliminary results on nymphal toxicity and applicability on Citrus limon. Journal of Natural Pesticide Research, 1, 100004. https://doi.org/10.1016/j.napere.2022.100004

Souto, A. L., Sylvestre, M., Tölke, E. D., Tavares, J. F., Barbosa-Filho, J. M., & Cebrián-Torrejón, G. (2021). Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules, 26(16), 4835. DOI: https://doi.org/10.3390/molecules26164835

Tambe, E., & Gotmare, S. (2020). Qualitative estimation of chemical composition of five different clove oils (Syzygium aromaticum) by GCMS. International Journal of Multidisciplinary Educational Research, 9(6), 5.

Tavvabi-Kashani, N., Hasanpour, M., Rahimi, V. B., Vahdati-Mashhadian, N., & Askari, V. R. (2024). Pharmacodynamic, pharmacokinetic, toxicity, and recent advances in Eugenol's potential benefits against natural and chemical noxious agents: A mechanistic review. Toxicon, 107607. DOI: https://doi.org/10.1016/j.toxicon.2024.107607

Teles, A. M., Silva-Silva, J. V., Fernandes, J. M. P., Abreu-Silva, A. L., Calabrese, K. D. S., Mendes Filho, N. E., Mouchrek A. N., & Almeida-Souza, F. (2021). GC?MS Characterization of Antibacterial, Antioxidant, and Antitrypanosomal Activity of Syzygium aromaticum Essential Oil and Eugenol. Evidence?Based Complementary and Alternative Medicine, 2021(1), 6663255. DOI: https://doi.org/10.1155/2021/6663255

Uddin, M. A., Shahinuzzaman, M., Rana, M. S., & Yaakob, Z. (2017). Study of chemical composition and medicinal properties of volatile oil from clove buds (Eugenia caryophyllus). International Journal of pharmaceutical sciences and research, 8(2), 895. DOI: https://doi.org/10.13040/IJPSR.0975-8232.8(2).895-99

Ulanowska, M., & Olas, B. (2021). Biological properties and prospects for the application of eugenol—a review. International journal of molecular sciences, 22(7), 3671. DOI: https://doi.org/10.3390/ijms22073671

Wang, W., Zhang, Y., Yang, Z., & He, Q. (2021). Effects of incorporation with clove (Eugenia caryophyllata) essential oil (CEO) on overall performance of chitosan as active coating. International Journal of Biological Macromolecules, 166, 578-586. https://doi.org/10.1016/j.ijbiomac.2020.10.215

Yan, T. K., Asari, A., Salleh, S. A., & Azmi, W. A. (2021). Eugenol and thymol derivatives as antifeedant agents against red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) larvae. Insects, 12(6), 551. https://doi.org/10.3390/insects12060551

Zuo, J., Lan, R., Lv, N., Lin, Y., Hao, L., Zhou, X., & Zhou, H. (2024). A Promising Plant-Based Eugenol-Loaded Nano Delivery System (EUG@ CMC-PGMA-CS) for Enhanced Antibacterial and I

Downloads

Published

14-06-2025

How to Cite

Kusuma, R. M., Saefurrohman, & Wiyatiningsih, S. (2025). Quantitative Analysis of Eugenol Content in Clove Oil (Eugenia caryophyllus) Extracted from Flower, Stem, and Leaf using GC-MS Instrument. Nusantara Science and Technology Proceedings, 2025(49), 42-50. https://doi.org/10.11594/nstp.2025.4906

Similar Articles

1-10 of 272

You may also start an advanced similarity search for this article.