Forecasting The Number of Traffic Accidents in Purbalingga Regency on 2023 Using Time Series Model
DOI:
https://doi.org/10.11594/nstp.2024.4168Keywords:
Time Series Method, ARMA (1,1), Traffic AccidentAbstract
Accident data from Satlantas Purbalingga Regency shows that in 2022 there is an increase in the number of traffic accidents in the Purbalingga Regency. In the future, the impact of accidents is predicted to be bigger so it is necessary to forecasting. Forecasting is one of the most important elements in decision making, because effective or not a decision generally depends on several factors that can not be seen at the time the decision was taken. In this time study the possible time series model is ARMA (2,2), ARMA (2,1), ARMA (1,2), ARMA (1,1), AR (2), AR (1), MA (2), MA (1). However, after testing, the model used is ARMA (1,1). This model is used because it meets all the assumption requirements that are parameter significant, residual independent test, residual normality test, and the smallest Mean Square Error value. According to data forecasting results the highest number of crashes existed in January of 97 accidents and the lowest in December amounted to 93 accidents, So the necessary action from the relevant agencies to cope with the increasing number of traffic accidents in the Purbalingga Regency.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Trimono, Amri Muhaimin, Nabilah Selayanti

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this proceedings agree to the following terms:
Authors retain copyright and grant the Nusantara Science and Technology Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this proceeding.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the proceedings published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this proceeding.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See the Effect of Open Access).