Quantum Relativistic Dual Engine with Single Massless Boson in One-Dimensional Box

Authors

  • Nailul Hasan Physics Department, Faculty of Engineering and Science, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya 60294, Indonesia
  • Nenni Mona Aruan Physics Department, Faculty of Engineering and Science, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya 60294, Indonesia
  • Akbar Sujiwa Physics Department, Faculty of Engineering and Science, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya 60294, Indonesia

DOI:

https://doi.org/10.11594/nstp.2025.4820

Keywords:

Dual engine, efficiency, energy levels, heat engine, quantum, relativistic

Abstract

This paper investigates the operational characteristics of a quantum relativistic dual engine driven by a single massless boson confined in a one-dimensional box. The study explores the interplay between quantum mechanics, relativity, and thermodynamics by analyzing the quantized energy levels and their dependence on the system's length. The quantum heat engine operates through a cycle of adiabatic, isochoric, and isobaric processes, where the force exerted by the particle on the walls of the box serves as the equivalent of pressure in classical engines. The results reveal that the efficiency and work output of the engine are significantly influenced by the relativistic and quantum mechanical constraints, diverging from classical thermodynamic predictions. The efficiency of the quantum engine depends on the quantum state transitions, the associated changes in system parameters such as length and force, and the relativistic effects, rather than temperature ratios as in classical engines. The study demonstrates the potential for quantum heat engines to surpass classical efficiency limits, particularly in systems where relativistic and quantum effects are significant. These findings provide a deeper understanding of energy conversion at quantum scales and suggest promising applications in advanced quantum technologies.

Downloads

Download data is not yet available.

References

Alicki, R., & Gelbwaser-Klimovsky, D. (2015). Non-equilibrium quantum heat machines. New Journal of Physics, 17(11), 115012. doi: 10.1088/1367-2630/17/11/115012.

Ballentine, L. E. (1998). Quantum mechanics: A modern development. Singapore: World Scientific.

Binder, F. C., Vinjanampathy, S., Modi, K., & Goold, J. (2015). Quantum thermodynamics of general quantum processes. Physical Review E, 91(3), 032119. doi: 10.1103/PhysRevE.91.032119.

Campisi, M., & Fazio, R. (2016). The power of a critical heat engine. Nature Communications, 7, 11895, doi: 10.1038/ncomms11895.

Deffner, S., & Campbell, S. (2019). Quantum Thermodynamics: An Introduction to the Thermodynamics of Quantum Information. 1st ed. California: Morgan & Claypool Publishers.

del Campo, A., Goold, J., & Paternostro, M. (2014). More bang for your buck: Super-adiabatic quantum engines. Scientific Reports, 4, 6208. doi: 10.1038/srep06208.

Esposito, M., Lindenberg, K., & den Broeck, V. (2009). Universality of efficiency at maximum power. Physical Review Letters, 102(13), 130602. doi: 10.1103/PhysRevLett.102.130602.

Feldmann, T., & Kosloff, R. (2000). Performance of discrete heat engines and heat pumps in finite time. Physical Review E, 61(5), 4774-4790. doi: 10.1103/PhysRevE.61.4774.

Griffiths, D. J. (2017). Introduction to quantum mechanics. 3rd ed. Boston: Pearson Education.

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620-630. doi: 10.1103/PhysRev.106.620.

Kieu, T. D. (2004). The second law, Maxwell's demon, and work derivable from quantum heat engines. Physical Review Letters, 93(14), 140403. doi: 10.1103/PhysRevLett.93.140403.

Kosloff, R. (2013). Quantum thermodynamics: A dynamical viewpoint. Entropy, 15(6), 2100-2128. DOI: 10.3390/e15062100.

Kosloff, R., & Levy, A. (2014). Quantum heat engines and refrigerators: continuous devices. Annual Review of Physical Chemistry, 65(1), 365-393, doi: 10.1146/annurev-physchem-040513-103724.

Mitchison, M. T. (2019). Quantum thermal machines: Beyond the carnot limit. Contemporary Physics, 60(2), 164-187, doi: 10.1080/00107514.2019.1631555.

Quan, H. T., Liu, Y. X., Sun, C. P., & Nori, F. (2007). Quantum thermodynamic cycles and quantum heat engines. Physical Review E, 76(3), 031105. doi: 10.1103/PhysRevE.76.031105.

Scovil, H. E. D., & Schulz-DuBois, E. O. (1959). Three-level masers as heat engines. Physical Review Letters, 2(6), 262-263. doi: 10.1103/PhysRevLett.2.262.

Uzdin, R., Levy, A., & Kosloff, R. (2015). Equivalence of quantum heat machines and quantum-thermodynamic signatures. Physical Review X, 5(3), 031044. doi: 10.1103/PhysRevX.5.031044.

Vinjanampathy, S., & Anders, J. (2016). Quantum thermodynamics. Contemporary Physics, 57(4), 545-579. doi: 10.1080/00107514.2016.1201896.

Downloads

Published

02-05-2025

Conference Proceedings Volume

Section

Articles

How to Cite

Hasan, N. ., Aruan, N. M. ., & Sujiwa , A. . (2025). Quantum Relativistic Dual Engine with Single Massless Boson in One-Dimensional Box. Nusantara Science and Technology Proceedings, 2025(48), 174-181. https://doi.org/10.11594/nstp.2025.4820

Similar Articles

11-20 of 227

You may also start an advanced similarity search for this article.