Classification of Covid-19 RT-PCR Test Results Using Auto-encoder And Random Forest
DOI:
https://doi.org/10.11594/nstp.2023.3338Keywords:
COVID-19, RT-PCR, classification, auto encoder, random forestAbstract
Corona Virus Disease (COVID-19) is a new type of virus that emerged at the end of 2019. COVID-19 has become a pandemic due to the increase in the number of cases taking place very quickly and has spread to all corners of the world. The World Health Organization (WHO) recommends the use of the Reverse Transcription-Polymerase Chain Reaction (RT-PCR) method as a way to test the diagnosis of COVID-19 infection. This study builds a classification system for the COVID-19 RT-PCR test results by applying the Auto-encoder algorithm and the Random Forest classification. The dataset used is the result of the RT-PCR test from one of the hospitals in Brazil. The method used is the Auto-encoder to process the dataset features first and the Random Forest algorithm to classify the RT-PCR test results that have positive and negative labels. From this process, it can be seen that the Auto-encoder model can process datasets well and the classification carried out using Random Forest can classify with an accuracy of 87.2%.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Andreas Nugroho Sihananto, Eristya Maya Safitri, Arif Widiasan Subagio, Muhammad Dafa Ardiansyah, Aditya Primayudha

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this proceedings agree to the following terms:
Authors retain copyright and grant the Nusantara Science and Technology Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this proceeding.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the proceedings published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this proceeding.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See the Effect of Open Access).