Dielectric Properties of Barium Strontium Titanate (BST) Thin Films In Light Sensor Materials

Authors

  • Faanzir Faanzir Department of Electrical Engineering, Engineering Faculty, Universitas Khairun, Ternate, North Maluku, 97719, Indonesia
  • Umar Umar Department of Electrical Engineering, Engineering Faculty, Universitas Khairun, Ternate, North Maluku, 97719, Indonesia
  • Iswan Iswan Department of Electrical Engineering, Engineering Faculty, Universitas Khairun, Ternate, North Maluku, 97719, Indonesia
  • Ramly Rasyid Department of Electrical Engineering, Engineering Faculty, Universitas Khairun, Ternate, North Maluku, 97719, Indonesia
  • Irzaman Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, West Java, 16680 Indonesia

DOI:

https://doi.org/10.11594/nstp.2025.4802

Keywords:

Barium Strontium Titanate (BST), Chemical Solution Deposition (CSD), Pulsed Laser Deposition (PLD), sputtering, Metallo Organic Chemical Vapor Deposition (MOCVD)

Abstract

A barium strontium titanate (BST) 1 M thin film was grown on a p-type Si (100) subtract using the chemical solution decomposition (CSD) method followed by a spin process after an annealing holding period of 15 hours at temperatures of 750 ?C and 775 ?C. Coating at 3000 rpm for 30 seconds. The optical characteristics test, which uses absorbance and transmittance measurement, demonstrates that increasing the annealing temperature can improve BST's absorbance and gap energy properties. The true plot approach yielded a gap energy of 3.05 eV at 750 ?C and 3.225 eV at 775 ?C.

Downloads

Download data is not yet available.

References

Abomostafa, H. M., Mansour, D. E. A., Mahani, R. M., & Nasralla, N. H. S. (2023). Investigation of structure, thermal and dielectric study of Dy0.05Ba0.7Sr0.25TiO3/polystyrene nanocomposites. Phys. Scr., 98(8). doi: 10.1088/1402-4896/ace2f7.

Biswas, M., & Su, P.-C. (2017). Chemical solution deposition technique of thin-film ceramic electrolytes for solid oxide fuel cells. In book: Modern Technologies for Creating the Thin-film Systems and Coatings. doi: 10.5772/66125.

Dawson, N. M., Atencio, P. M., & Malloy, K. J. (2017). Facile deposition of high quality ferroelectric poly(vinylidene fluoride) thin films by thermally modulated spin coating. J. Polym. Sci. Part B Polym. Phys., 55(3), 221–227. doi: 10.1002/polb.24273.

Han, X., Ji, Y., & Yang, Y. (2022). Ferroelectric photovoltaic materials and devices. Advanced Functional Materials, 32(14), 2109625. doi: 10.1002/adfm.202109625.

Huriawati, F., & Irzaman, I. (2016). kajian sifat optik film tipis bst didadah niobium dan tantalum. J. Pendidik. Fis. dan Keilmuan, 1(1), 9. doi: 10.25273/jpfk.v1i1.6.

Irzaman, Nuraisah, A., Aminullah, Hamam, K. A., & Alatas, H. (2018). Optical properties and crystal structure of lithium doped Ba 0.55 Sr 0.45 TiO 3 (BLST) thin films. Ferroelectr. Lett. Sect., 45(1-3), 14-21. doi: 10.1080/07315171.2018.1499361.

Ju, M., Dou, Z., Li, J-W. et al. (2023). Piezoelectric materials and sensors for structural health monitoring: Fundamental aspects, current status, and future perspectives. Sensors 2023, 23(1), 543; https://doi.org/10.3390/s23010543.

Kelele, K. G., Tadesse, A., Desalegn, T., Ghotekar, S., Balachandran, R., & Murthy, H. C. A. (2021). Synthesis and characterizations of metal ions doped barium strontium titanate (BST) nanomaterials for photocatalytic and electrical applications: A mini review. International Journal of Materials Research, 112(8), 665-677. doi: 10.1515/ijmr-2020-8149.

Kim, J. Y., Choi, M. J., & Jang, H. W. (2021). Ferroelectric field effect transistors: Progress and perspective. APL Mater., 9, 021102. doi: 10.1063/5.0035515.

Kurniawan, A., Irzaman, Yuliarto, B., Fahmi, M. Z., & Ferdiansjah. (2020). Application of barium strontium titanate (BST) as a light sensor on led lights. Ferroelectrics, 554(1), 160-171. doi: 10.1080/00150193.2019.1684758.

Liang, C., Xiao, J., Wang, Y., Wang, C., & Mei, S. (2021). Relationship between internal viscous damping and stiffness of concrete material and structure. Struct. Concr., 22(3), 1410-1428. doi: 10.1002/suco.202000628

Luy, E. A., Morgan, S. C., Creelman, J. J., Murphy, B. J., & Sieben, V. J. (2020). Inlaid microfluidic optics: Absorbance cells in clear devices applied to nitrite and phosphate detection. J. Micromechanics Microengineering, 30(9), 095001. doi: 10.1088/1361-6439/ab9202.

Rivas Valles, G. (2021). The construction of a photoabsorption spectrum using the FEFF 9 package: a detailed procedure. Acta Univ., 31, e3214. doi. http://doi.org/10.15174.au.2021.3214.

Rose, O. L., Bonciu, A., Marascu, V. et al. (2021). Thin films of metal-organic framework interfaces obtained by laser evaporation. Nanomaterials, 11(6), 1367. https://doi.org/10.3390/nano11061367doi: 10.3390/nano11061367.

Yang, F., Chen, Y., Li, X., Huang, W., Wang, G., & Dong, X. (2021). Designing lead-free barium strontium titanate-based weakly coupled relaxor ferroelectric ceramics with simultaneous high energy density and efficiency via Bi3+ lone pair covalent effect. Ceram. Int., 47(18), 25785-25793. doi: 10.1016/j.ceramint.2021.05.306.

Zhang, X. U., Faber, D. J., Post, A. L., van Leeuwen, T. G., & Sterenborg, H. J. C. M. (2019). Refractive index measurement using single fiber reflectance spectroscopy. J. Biophotonics, 12(7), e201900019. doi: 10.1002/jbio.201900019

Downloads

Published

28-04-2025

Conference Proceedings Volume

Section

Articles

How to Cite

Faanzir, F. ., Umar, U. ., Iswan, I. ., Rasyid, R. ., & Irzaman. (2025). Dielectric Properties of Barium Strontium Titanate (BST) Thin Films In Light Sensor Materials. Nusantara Science and Technology Proceedings, 2025(48), 12-17. https://doi.org/10.11594/nstp.2025.4802

Similar Articles

1-10 of 250

You may also start an advanced similarity search for this article.