Crime Clustering Analysis Based on the Education Level Using the K-Means and Silhouette Coefficient Testing Method
DOI:
https://doi.org/10.11594/nstp.2025.4807Keywords:
Crime, clustering, k-means algorithmAbstract
This study aims to analyze crime clustering based on the education level of correctional prisoners in a Ternate Class II Detention Centre using the K-Means method and silhouette coefficient testing. The K-means method is used to group correctional prisoners’ data based on the level of education and the type of crime committed. Silhouette coefficient testing is used to evaluate the quality of the resulting clustering. The clustering results show that correctional prisoners can be grouped into three main clusters based on education level and type of crime. The first cluster is dominated by prisoners with low education levels who tend to commit drug and theft crimes. The second cluster includes correctional prisoners with secondary education who mostly commit crimes of abuse and child protection. The third cluster includes prisoners with higher education who commit various types of crimes, including corruption and decency. This research shows that the K-Means method is effective for clustering WBPs based on education level and crime type, and Silhouette Coefficient testing confirms that the cluster-ing results are of good quality.
Downloads
References
Anis, H. (2023). Jenjang pendidikan. Accessed: Nov. 04, 2023. [Online]. Available: https://www.tripven.com/jenjang-pendidikan/
Assiroj, P., & Fauzi, A. (2017). Data mining dengan teknik clustering menggunakan algoritma K-Means pada data transaksi superstore. Conference: Seminar Nasional Informatika dan Aplikasinya 2017. doi:10.5281/zenodo.1186505
Deremi, S., Nainggolan, N., & Weku, W. (2023). Peramalan tingkat kriminalitas kota ternate provinsi Maluku Utara menggunakan metode double exponential smoothing. Indonesian Journal of Intelligence Data Science, 2(1), 27–34.
Echoukairi, H., Idrissi, A., & Omary, F. (2022). New hierarchical routing protocol based on K-Means clustering with exploiting free time slot for wireless sensor networks. International Journal of Interactive Mobile Technologies, 16(8), 165–181. doi: 10.3991/ijim.v16i08.29863.
Gao, X., Ding, X., Han, T., & Kang, Y. (2022). Analysis of influencing factors on excellent teachers’ professional growth based on DB-Kmeans method. EURASIP J Adv Signal Process, 2022(1). doi: 10.1186/s13634-022-00948-2.
Hidayati, R., Zubair, A., Pratama, A. H., & Indana, L. (2021). Analisis Silhouette Coefficient pada 6 Perhitungan Jarak K-Means Clustering. Techno Com, 20(2), 186-197.
Putra, D., Martha, G. S., Fikram, M., & Yuhan, R. J. (2020). Faktor-faktor yang memengaruhi tingkat kriminalitas di Indonesia Tahun 2018. Indonesian Journal of Applied Statistics, 3(2). ttps://doi.org/10.13057/ijas.v3i2.41917
Saputra, R. (2023). Analisis tingkat pendidikan, kemiskinan dan pengangguran terhadap kriminalitas di Bekasi. Jurnal Ilmu Hukum Humaniora dan Politik, 3(4), 159-163. doi: 10.38035/jihhp.v3i4
Saragih, R. P., Zinaidi, M., & Hafizah, H. (2023). Implementasi data mining dalam pengelompokkan data potensi kejahatan menggunakan algoritma K-Means clustering pada Kapolsek Beringin. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 2(4), 665. doi: 10.53513/jursi.v2i4.5404.
Septiani, N., & Erwansyah, K. (2020). Analisis data mining pengelompokkan kasus tindak kejahatan yang terjadi di Kecamatan Medan Polonia Dengan Menggunakan Metode K-Means Clustering. Jurnal Cyber Tech., 3(2), 1–13.
Sigalingging, A. R. (2023). Pengaruh kualitas sumber daya manusia terhadap tingkat kriminalitas di Indonesia. Madani: Jurnal Ilmiah Multidisiplin, 1(11), 597. doi: 10.5281/zenodo.10396542.
Struyf, A., Hubert, M., & Rousseeuw, P. J. (1996). Clustering in an object-oriented environment. J Stat Softw, 1, 1–30. doi: 10.18637/jss.v001.i04.
Suriani, L. (2020). Pengelompokan data kriminal pada poldasu menentukan pola daerah rawan tindak kriminal menggunakan data mining algoritma K-Means clustering. Jurnal Sistem Komputer dan Informatika (JSON), 1(2), 151. doi: 10.30865/json.v1i2.1955.
Sutejo, D., Pranoto, Y. A., & Zahro, H. Z. (2020). Sistem informasi geografis pengelompokan tingkat kriminalitas kota malang menggunakan metode K-Means. JATI (Jurnal Mahasiswa Teknik Informatika), 4(1), 356–363. doi: 10.36040/jati.v4i1.2315.
Tambunan, H. B., Barus, D. H., Hartono, J., Alam, A. S., Nugraha, D. A., & Usman, H. H. H. (2020). Electrical peak load clustering analysis using K-means algorithm and silhouette coefficient. Proceeding - 2nd International Conference on Technology and Policy in Electric Power and Energy, ICT-PEP 2020, 258–262. doi: 10.1109/ICT-PEP50916.2020.9249773.
Usman, A. (2024). Fungsi pemasyarakatan bagian satu. Accessed: Jan. 29, 2024. [Online]. Available:https://bpsdm.kemenkumham.go.id/informasi-publik/publikasi/pojok-penyuluhan-hukum/fungsi-pemasyarakatan-bagian-satu
Downloads
Published
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Suci Ayu Maharani, Abdul Mubarak, Alfanugrah A H. Usman, Amal Khairan, Rosihan, Salkin Lutfi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this proceedings agree to the following terms:
Authors retain copyright and grant the Nusantara Science and Technology Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this proceeding.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the proceedings published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this proceeding.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See the Effect of Open Access).