Crime Clustering Analysis Based on the Education Level Using the K-Means and Silhouette Coefficient Testing Method

Authors

  • Suci Ayu Maharani Department of Informatics, Faculty of Engineering, Universitas Khairun, Ternate, North Maluku, 97719, Indonesia
  • Abdul Mubarak
  • Alfanugrah A H. Usman Department of Informatics, Faculty of Engineering, Universitas Khairun, Ternate, North Maluku, 97719, Indonesia
  • Amal Khairan Department of Informatics, Faculty of Engineering, Universitas Khairun, Ternate, North Maluku, 97719, Indonesia
  • Rosihan Department of Informatics, Faculty of Engineering, Universitas Khairun, Ternate, North Maluku, 97719, Indonesia
  • Salkin Lutfi Department of Informatics, Faculty of Engineering, Universitas Khairun, Ternate, North Maluku, 97719, Indonesia

DOI:

https://doi.org/10.11594/nstp.2025.4807

Keywords:

Crime, clustering, k-means algorithm

Abstract

This study aims to analyze crime clustering based on the education level of correctional prisoners in a Ternate Class II Detention Centre using the K-Means method and silhouette coefficient testing. The K-means method is used to group correctional prisoners’ data based on the level of education and the type of crime committed. Silhouette coefficient testing is used to evaluate the quality of the resulting clustering. The clustering results show that correctional prisoners can be grouped into three main clusters based on education level and type of crime. The first cluster is dominated by prisoners with low education levels who tend to commit drug and theft crimes. The second cluster includes correctional prisoners with secondary education who mostly commit crimes of abuse and child protection. The third cluster includes prisoners with higher education who commit various types of crimes, including corruption and decency. This research shows that the K-Means method is effective for clustering WBPs based on education level and crime type, and Silhouette Coefficient testing confirms that the cluster-ing results are of good quality.

Downloads

Download data is not yet available.

References

Anis, H. (2023). Jenjang pendidikan. Accessed: Nov. 04, 2023. [Online]. Available: https://www.tripven.com/jenjang-pendidikan/

Assiroj, P., & Fauzi, A. (2017). Data mining dengan teknik clustering menggunakan algoritma K-Means pada data transaksi superstore. Conference: Seminar Nasional Informatika dan Aplikasinya 2017. doi:10.5281/zenodo.1186505

Deremi, S., Nainggolan, N., & Weku, W. (2023). Peramalan tingkat kriminalitas kota ternate provinsi Maluku Utara menggunakan metode double exponential smoothing. Indonesian Journal of Intelligence Data Science, 2(1), 27–34.

Echoukairi, H., Idrissi, A., & Omary, F. (2022). New hierarchical routing protocol based on K-Means clustering with exploiting free time slot for wireless sensor networks. International Journal of Interactive Mobile Technologies, 16(8), 165–181. doi: 10.3991/ijim.v16i08.29863.

Gao, X., Ding, X., Han, T., & Kang, Y. (2022). Analysis of influencing factors on excellent teachers’ professional growth based on DB-Kmeans method. EURASIP J Adv Signal Process, 2022(1). doi: 10.1186/s13634-022-00948-2.

Hidayati, R., Zubair, A., Pratama, A. H., & Indana, L. (2021). Analisis Silhouette Coefficient pada 6 Perhitungan Jarak K-Means Clustering. Techno Com, 20(2), 186-197.

Putra, D., Martha, G. S., Fikram, M., & Yuhan, R. J. (2020). Faktor-faktor yang memengaruhi tingkat kriminalitas di Indonesia Tahun 2018. Indonesian Journal of Applied Statistics, 3(2). ttps://doi.org/10.13057/ijas.v3i2.41917

Saputra, R. (2023). Analisis tingkat pendidikan, kemiskinan dan pengangguran terhadap kriminalitas di Bekasi. Jurnal Ilmu Hukum Humaniora dan Politik, 3(4), 159-163. doi: 10.38035/jihhp.v3i4

Saragih, R. P., Zinaidi, M., & Hafizah, H. (2023). Implementasi data mining dalam pengelompokkan data potensi kejahatan menggunakan algoritma K-Means clustering pada Kapolsek Beringin. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 2(4), 665. doi: 10.53513/jursi.v2i4.5404.

Septiani, N., & Erwansyah, K. (2020). Analisis data mining pengelompokkan kasus tindak kejahatan yang terjadi di Kecamatan Medan Polonia Dengan Menggunakan Metode K-Means Clustering. Jurnal Cyber Tech., 3(2), 1–13.

Sigalingging, A. R. (2023). Pengaruh kualitas sumber daya manusia terhadap tingkat kriminalitas di Indonesia. Madani: Jurnal Ilmiah Multidisiplin, 1(11), 597. doi: 10.5281/zenodo.10396542.

Struyf, A., Hubert, M., & Rousseeuw, P. J. (1996). Clustering in an object-oriented environment. J Stat Softw, 1, 1–30. doi: 10.18637/jss.v001.i04.

Suriani, L. (2020). Pengelompokan data kriminal pada poldasu menentukan pola daerah rawan tindak kriminal menggunakan data mining algoritma K-Means clustering. Jurnal Sistem Komputer dan Informatika (JSON), 1(2), 151. doi: 10.30865/json.v1i2.1955.

Sutejo, D., Pranoto, Y. A., & Zahro, H. Z. (2020). Sistem informasi geografis pengelompokan tingkat kriminalitas kota malang menggunakan metode K-Means. JATI (Jurnal Mahasiswa Teknik Informatika), 4(1), 356–363. doi: 10.36040/jati.v4i1.2315.

Tambunan, H. B., Barus, D. H., Hartono, J., Alam, A. S., Nugraha, D. A., & Usman, H. H. H. (2020). Electrical peak load clustering analysis using K-means algorithm and silhouette coefficient. Proceeding - 2nd International Conference on Technology and Policy in Electric Power and Energy, ICT-PEP 2020, 258–262. doi: 10.1109/ICT-PEP50916.2020.9249773.

Usman, A. (2024). Fungsi pemasyarakatan bagian satu. Accessed: Jan. 29, 2024. [Online]. Available:https://bpsdm.kemenkumham.go.id/informasi-publik/publikasi/pojok-penyuluhan-hukum/fungsi-pemasyarakatan-bagian-satu

Downloads

Published

29-04-2025

Conference Proceedings Volume

Section

Articles

How to Cite

Maharani, S. A. ., Mubarak, A. ., Usman, A. A. H. ., Khairan, A. ., Rosihan, & Lutfi, S. . (2025). Crime Clustering Analysis Based on the Education Level Using the K-Means and Silhouette Coefficient Testing Method. Nusantara Science and Technology Proceedings, 2025(48), 58-65. https://doi.org/10.11594/nstp.2025.4807

Similar Articles

1-10 of 85

You may also start an advanced similarity search for this article.